Распределение нагрузки по фазам

Расчёт мощности по току и напряжению

Данный расчет происходит по факту мощности, проделывать его необходимо еще до начала проектирование своего жилища (дома, квартиры).

  • Из этого значение зависят кабеля питающие приборы которые подключены к электросети.
  • По формуле можно вычислить силу тока, для этого понадобиться взять точное напряжение сети и нагрузку питающихся приборов. Ее величина дает нам понять площадь сечение жил.

Если вам известны все электроприборы, которые в будущем должны питаться от сети, тогда можно легко сделать расчеты для схемы электроснабжение. Эти же расчеты можно выполнять и для производственных целей.

Однофазная сеть напряжением 220 вольт

Формула силы тока I (A — амперы):

Где P — это электрическая полная нагрузка (ее обозначение обязательно указывается в техническом паспорте данного устройства), Вт — ватт;

U — напряжение электросети, В (вольт).

В таблице представлены стандартные нагрузки электроприборов и потребляемый ими ток (220 В).

Электроприбор Потребляемая мощность, Вт Сила тока, А
Стиральная машина 2000 – 2500 9,0 – 11,4
Джакузи 2000 – 2500 9,0 – 11,4
Электроподогрев пола 800 – 1400 3,6 – 6,4
Стационарная электрическая плита 4500 – 8500 20,5 – 38,6
СВЧ печь 900 – 1300 4,1 – 5,9
Посудомоечная машина 2000 — 2500 9,0 – 11,4
Морозильники, холодильники 140 — 300 0,6 – 1,4
Мясорубка с электроприводом 1100 — 1200 5,0 — 5,5
Электрочайник 1850 – 2000 8,4 – 9,0
Электрическая кофеварка 6з0 — 1200 3,0 – 5,5
Соковыжималка 240 — 360 1,1 – 1,6
Тостер 640 — 1100 2,9 — 5,0
Миксер 250 — 400 1,1 – 1,8
Фен 400 — 1600 1,8 – 7,3
Утюг 900 — 1700 4,1 – 7,7
Пылесос 680 — 1400 3,1 – 6,4
Вентилятор 250 — 400 1,0 – 1,8
Телевизор 125 — 180 0,6 – 0,8
Радиоаппаратура 70 — 100 0,3 – 0,5
Приборы освещения 20 — 100 0,1 – 0,4

На рисунке вы можете видет схему устройства электроснабжение дома при однофазном подключении к сети 220 вольт.

Схема приборов при однофазном напряжении

Как и показано на рисунке, все потребители должны быть подключены к соответствующим автоматам и счетчику, далее к общему автомату который будет выдерживать общею нагрузку дома. Кабель который будет доводит ток, должен выдерживать нагрузку всех подключенных бытовых приборов.

В таблице ниже показана скрытая проводка при однофазной схеме подключение жилища для подбора кабеля при напряжении 220 вольт.

Сечение жилы провода, мм 2 Диаметр жилы проводника, мм Медные жилы Алюминиевые жилы
Ток, А Мощность, Вт Ток, А Мощность, кВт
0,50 0,80 6 1300
0,75 0,98 10 2200
1,00 1,13 14 3100
1,50 1,38 15 3300 10 2200
2,00 1,60 19 4200 14 3100
2,50 1,78 21 4600 16 3500
4,00 2,26 27 5900 21 4600
6,00 2,76 34 7500 26 5700
10,00 3,57 50 11000 38 8400
16,00 4,51 80 17600 55 12100
25,00 5,64 100 22000 65 14300

Как и показано в таблице, сечение жил зависит и от материала из которого изготовлен.

Требования для подключения 380 вольт

Нормы подсоединения участка прописаны в тексте Федерального закона №35 «Об электроэнергетике» от 26.03.2003 (статьи 20 – 26), отредактированном 27.12.2019. Работа электросетевых фирм регламентируется ФЗ №135 «О защите конкуренции» от 26.07.2006.

Пример ТУ

Основные правила:

  • пользователь не может самостоятельно подсоединить электричество к дому, нужна энергопоставляющая организация;
  • подключение возможно после выполнения требований ТУ;
  • используют кабели с алюминиевыми (не меньше 16 мм²) или медными (не меньше 10 мм²) жилами, под землей прокладывают бронированный кабель;
  • при воздушном подсоединении кабель не провисает над дорогой ниже 6 м, над тротуарами — ниже 3,5 м;
  • подземная линия заглубляется на 0,7 – 1 м или ниже;
  • ввод в жилище — не ниже 2,75 м от земли;
  • приборы, установленные до счетчика электричества должны иметь возможность пломбировки.

Как оформить разрешение

Потребитель имеет право подсоединения к любому объекту электрохозяйства в пределах 300 м от участка (опоры ЛЭП, трансформаторные подстанции, кабельные магистрали). Договор заключают на новое подключение, повышение мощности или перенос точки ввода.

Перечень проектных документов:

  • план участка в общей панировке застройки;
  • схема присоединения приемников электроэнергии;
  • схема внутренней разводки;
  • ППР по подключению.

Заявление пишут в офисе компании, или подают в личном кабинете, через сайт.

К заявке подают сведения:

  • ФИО подателя заявки;
  • адрес подключаемого участка и фактического нахождения пользователя;
  • срок разработки проекта и время ввода в работу;
  • разделение по мощности между фазами;
  • наибольшая требуемая мощность;
  • вид нагрузки.

Об окончании подготовки владелец извещает компанию, в ответ электросеть проверяет соответствие ТУ и фактических работ в присутствии представителя снабжающей организации поставщика. Составляют акт о соответствии (в течение 3 суток), владелец участка ставит в документе подпись в течение 5 суток. Далее следуют: соглашение о технологическом подсоединении, договор о поставке электричества. После этого на участок подают 380В.

Линейное и фазное напряжение – отличие и соотношение

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.

Действующее значение и амплитудное значение напряжения

Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком – среднеквадратичные значения напряжений . Что это значит?

Это значит, что на самом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.

Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.

Фазное сетевой напряжение

Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, – называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой .

Линейное напряжение трехфазной сети

Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, – называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.

Откуда взялся корень из 3

В электротехнике часто применяют векторный метод изображения синусоидально изменяющихся во времени величин напряжений и токов.

График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида отражает динамику напряжения.

Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.

Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.

Возникновение концепции трёхфазного напряжения

Отцом трёхфазного напряжения считают Доливо-Добровольского в России и Николу Теслу – в остальном мире. События, относящиеся к эпохе возникновения предмета спора, происходили в 80-е годы XIX века. Никола Тесла продемонстрировал первый двухфазный двигатель, работая на компанию, где налаживал электрические установки разнообразного назначения. Заинтересованность явлением электризации шерсти домашнего кота привела учёного к великим открытиям. Прогуливаясь в парке с приятелем, Никола Тесла осознал, что сумеет реализовать на практике теорию Араго о вращающемся магнитном поле, причём понадобятся:

  1. Две фазы.
  2. Сдвиг между ними на угол 90 градусов.

Чтобы показать великое значение открытия, заметим, что трансформатор Яблочкова в указанное время не обрел массовой известности, а опыты Фарадея по магнитной индукции благополучно забыли, записав лишь формулу закона. Мир не хотел знать про:

  • переменный ток;
  • фазу;
  • реактивная мощность.

Генераторы (альтернаторы) и динамо спрямляли напряжение при помощи механического коммутатора. Подобным образом прозябала вся скудная на тот момент отрасль электричества. Эдисон лишь начинал изобретать, никто пока толком не знал про лампочку накала. Кстати, в РФ считают, что устройство изобрёл Лодыгин.

Идея Теслы выглядела революционной, неизвестным оставалось, как получить две фазы с заданным межфазным сдвигом. Молодого учёного мало интересовал вопрос. Он читал про обратимость электрических машин и излучал уверенность, что легко построит генератор, соответствующим образом расположив обмотки. По приводу затруднений не возникало. На начало 80-х годов активно использовался пар, демонстрационную модель предполагалось питать от динамо.

Изображение 3 фаз

Тесла не задавался необходимостью получить определённую частоту. Исследования не проводились, требовалось просто заставить ротор вращаться. Идея реализовалась через токосъёмные кольца. На тот момент коллекторные двигатели постоянного тока снабжались подобными контактами, вывод Теслы неудивителен. Интереснее объяснить выбор количества фаз.

Последствия перекоса фаз

Последствия перекоса фаз проявляются в увеличении электропотребление из сети; в неправильной работе электроприемников, их сбоях, отказах, отключениях, перегорании предохранителей, износе изоляции.

Условно негативные последствия перекоса фаз можно разделить на три группы:

1. Последствия для электроприемников (приборов, оборудования), связанные с их повреждениями, отказами, увеличением износа, уменьшением периода эксплуатации.

а) последствия для однофазных электроприемниковНизкое напряжение вызывает неправильную работу однофазных потребителей: тусклый свет осветительных приборов, длительный нагрев нагревательных приборов, длительный запуск двигательных приборов, сбои в работе компьютеров и т.д. Высокое напряжение вызывает отказы электроприемников из-за износа изоляции, отключение их защитными устройствами, перегорание предохранителей.

б) последствия перекоса фаз для трехфазных электроприемниковОсновную часть трехфазных потребителей (потребителей, питающихся от линейного напряжения) составляют электродвигатели, которые приводят в действие погружные и фекальные насосы, приводы автоматических ворот, станочное оборудование и т.д.  Система управления и контроля запуска таких трехфазных потребителей, как правило, подключается к фазному напряжению. При перекосах фаз система управления запуском (СУЗ) электродвигателя, которая контролирует длительность и факт запуска, работает неустойчиво, т.е. спонтанно выдает команды на его пуск или останов.  Диапазон изменения фазного напряжения жестко регламентируется эксплуатационной документацией (как правило, не допускается перекос более ± 7,5 ÷ 10 % от номинала). Если перекос превысил допустимый предел, то СУЗ дает сбой. При восстановлении уровня фазного напряжения происходит очередной запуск и так далее.Известно, что режим «пуска в ход» асинхронного двигателя характеризуется кратковременной работой обмоток статора в режиме короткого замыкания (КЗ), т.е. в момент включения двигатель потребляет гораздо больше энергии, чем в процессе работы. Естественно, что частые повторные пуски будут вызывать значительный перегрев изоляции и существенно увеличивать электропотребление из сети. Возможные негативные последствия такого режима работы — либо отказ в запуске, либо отказ оборудования вследствие перегорания обмоток двигателя.

2. Последствия для источников электроэнергии: увеличение энергопотребления, увеличение потерь электроэнергии при питании от госсети; при питании от  трехфазного автономного источника – механические повреждения (повреждения подшипников валов, подшипниковых щитов генератора и приводного двигателя, закоксовывание форсунок), уменьшение периода эксплуатации источника, увеличение его износа, повышенный расход топлива, масла, охлаждающей жидкости.

3. Последствия для потребителей, связанные с безопасностью, так как ухудшение качества изоляции может привести к:— электротравматизму;— возгоранию электропроводки или электроприемников;а также последствия, связанные с увеличением расходов на:— электроэнергию;— расходные материалы для генератора;— ремонт электроприемников, поврежденных вследствие перекоса фаз;— приобретение новых электроприемников, отказавших вследствие перекоса фаз.

Как вычислить?

Определить любую величину, касаемую электрической энергии, поможет закон Ома. Он гласит: напряжение равняется силе тока, умноженной на сопротивление, а мощность – это сила, умноженная на напряжение.

Напряжение тока — это его сила умноженная на сопротивление. Показатель нужен для подбора оптимальных проводов и кабелей в доме. Получается, чтобы рассчитать ток по мощности, надо знать его силу и напряжение. Но как рассчитать амперы, зная мощность и напряженность, например? Опять же следуя закону Ома. Для этого необходимо мощность разделить на напряженность.

Произвести точный расчет можно с помощью нашего калькулятора.

Достаточно просто узнать силу тока, гораздо сложнее – произвести расчет сечения проводов. Для этого нужно посчитать силу тока и воспользоваться следующей таблицей:

Сечение медного провода в зависимости от величины потребляемого тока
Максимальный ток в амперах 1 2 3 4 5 6 10 16 20 25 32 40 50 63
Сечение жилы провода в миллиметрах 0,17 0,33 0,52 0,67 0,84 1 1,7 2,7 3,3 4,2 5,3 6,7 8,4 10,5

Для того чтобы посчитать мощность, зная ток и напряженность, используйте представленную ниже таблицу:

Электрическое оборудование Мощность прибора в ваттах Сила в амперах
Стиральная машинка 2000 10
«Теплый пол» 1000 5
Кухонная плита 7000 35
Микроволновка 1000 5
Посудомойка 2000 10
Холодильник 250 1
Кухонный комбайн 1100 5
Чайник 1900 9
Кофеварка 1100 5
Миксер 300 1,4
Фен 1000 2
Утюг 1500 6
Пылесос 1200 5
Телевизор 150 0,7
Радио 100 0,4
Светильники 50 0,2

Оборудование для защиты сети от короткого замыкания

Вы уже знаете, как посчитать амперы, зная мощность и напряжение, или вычислить мощность, когда известны сила тока и напряжение. Но иногда даже точные и верные расчеты не спасают от короткого замыкания. ЧП может случиться на трехфазной линии по не зависящим от пользователя причинам: попадание постороннего объекта на провода, обрыв из-за падения дерева. В таком случае даже если вы максимально правильно рассчитали силу тока по мощности и в вашем доме самая идеальная проводка, возможен пожар или выход электроприборов из строя. Защитить свою сеть можно следующими способами:

  • поставить плавкий предохранитель. Если амперы в электроцепи превысят допустимые значения, то предохранитель расплавится, цепь будет нарушена. Цена плавкого предохранителя – 400-600 рублей. Выбирайте товар отечественного производства, рассчитанный на работу с нашими электросетями;
  • установить автоматический выключатель. Это современное оборудование, которое надежно защищает бытовые приборы от преждевременного выхода из строя вследствие проблемы с проводами. Стоит от 200 до 2 тысяч рублей. Сработает за секунды в отличие от плавкого предохранителя, которому на размыкание потребуется примерно полминуты. При подключении изучите подробную информацию о маркировках проводов.

Автоматический выключатель тока защитит бытовую технику от поломок из-за короткого замыкания сети.

Однофазный ток.

Под однофазным током подразумевают – переменный ток, образующийся в процессе вращательных действий в области магнитного поля проводника либо целой совокупности проводников, которые объединяются общий поток.

Как вы уже знаете, однофазный ток передается с помощью двух проводов. Эти провода называют:

1.Один провод это, непосредственно, фаза;2.Второй – ноль.

В этих проводах напряжение 220 В.

Однофазное электропитание можно охарактеризовать множеством способов. Ни для кого не секрет, что однофазный ток поступает к потребителю с помощью:

1.Двух проводов;2.Трех проводов.

Первый вариант подачи однофазного тока – двухпроводной использует два провода, как это понятно уже исходя из названия. Один провод передает фазу, а второй предназначается для нулевого напряжения. На использовании такой системы ориентировались практически всегда при строительстве домостроений в СССР.

Использование второго предусматривает добавление еще одного провода. Он применяется для заземления. Основное предназначение такого провода – исключение варианта поражения людей электрическим током. Так же он нужен для отвода тока при утечке и исключение неполадок электроприборов.

Технические мероприятия

Имея на руках техническую документацию, с указанием наименований и места монтажа, можно приступать к установке электросчетчика своими руками. Прежде всего необходимо приобрести материалы и элементы для самостоятельного монтажа.

Если счетчик электроэнергии планируется ставить на улице (для частных домов и дач это оптимальное место размещения), на наружной стене дома (фасаде) или же столбе, необходимо установить ЯУР-НГ (ящик учета и распределения наружный, герметичный бокс). Он уже оснащен местом и элементами для крепления прибора учета, а также отдельным закрывающимся боксом под пломбировку автомата защиты ввода. Помимо этого бокс оснащен DIN рейкой для монтажа модульных автоматов. Пример установки электросчетчика в наружном боксе вы можете увидеть на фото:

Для того, чтобы установить электросчетчик в помещении можно использовать ящик ЯУР для внутренней установки или монтажную доску, в ней также предусмотрено место для монтажа дополнительных автоматов.

Расчет сечения кабеля описан в нашей статье. Перенос или замену счетчика, а также установку нового прибора учета лучше производить с заменой старого вводного кабеля на новый. Помимо этого рекомендуется установить в щитке элементы защиты (УЗО, автоматы) вместо устаревших пробок, заранее заложив возможность перехода на современную систему электроснабжения TN-C-S. О том, какие бывают системы заземления, можете прочитать в нашей статье. На рисунке ниже предоставлена схема подключения однофазного электросчетчика с заземлением:

В том случае, если вы решили установить электросчетчик своими руками, согласно правилам ПУЭ (см. Главу 1.5) нужно выполнить такие требования:

  1. Прибор учета электроэнергии может устанавливаться в электрических шкафах, на щитах и панелях, имеющих жесткую конструкцию.
  2. Высота установки по клеммам электросчетчика варьируется от 0,8 метра до 1,7 метра.
  3. В местах, где есть вероятность повреждения, загрязнения, доступа посторонних лиц, электросчетчик должен устанавливаться в бокс и запираться на ключ.
  4. Расположение счетчика должно позволять легкий доступ в обслуживании, снятии показаний, замене.
  5. Вводной кабель должен отвечать расчетным требованиям и соответствовать сечению, для безаварийного снабжения.
  6. Не допускаются скрутки, спайки на вводном кабеле, он должен быть одним цельным куском от подъездного ввода до прибора учета.

При подключении кабеля к счетчику, знайте что цветовая маркировка жил должна быть такой, согласно принятых правил — коричневый, черный, красный, белый это проводники подключаемые к фазам, обозначается как L. Синий — провод нуля N, желто-зеленная изоляция у защитного проводника РЕ. Помня про цветовую маркировку трудно запутаться.

Обращаем ваше внимание на то, что выполнять установку электросчетчика под напряжением категорически запрещается! Все электромонтажные работы должны производиться только при выключенном вводном автомате!

В частном доме, а также на дачном участке, в том случае если электросчетчик вновь устанавливаемый находится на столбе границы участка, имеется возможность подключения дома от ЯУРа проложив электропроводку в земле, или выполнив монтаж тросовой проводки на высоте по воздуху. Рекомендуем ознакомится с этими статьями на нашем ресурсе, где подробно описаны методы прокладывания кабеля в траншее и самостоятельное изготовление тросовой проводки.

Кстати, стоимость установки электросчетчика специалистом варьируется от 1000 рублей за однофазную модель и от 1500 рублей за трехфазный прибор.

Напоследок рекомендуем просмотреть видео, в которых наглядно демонстрируется, как установить однофазный и трехфазный счетчик электроэнергии:

Монтаж однофазной модели

Правила установки трехфазного прибора учета

Что касается способов подсоединения устройств, схемы подключения трехфазных счетчиков, а также однофазных, мы подробно рассмотрели в соответствующих статьях, с которыми настоятельно рекомендуем ознакомиться. В остальном, надеемся, что вам понравилась наша информация о том, как производится установка электросчетчика своими руками и какие документы для этого нужны.

Схемы трехфазных цепей

Обмотки генератора или трансформатора в трёхфазных цепях можно соединить между собой по двум схемам:

  • звезда;
  • треугольник.

Соединения выполняются на клеммнике (борно) агрегата или трансформатора, куда выводятся концы обмоток.

Соединение перемычками обмоток

Присоединение нагрузки к генератору (трансформатору) можно произвести по следующим схемам:

  • присоединение «звезда – звезда» с использованием нулевого проводника;
  • подключение «звезда – звезда» без использования нулевого провода;
  • подсоединение «звезда – треугольник»;
  • схема «треугольник – треугольник»;
  • соединение «треугольник – звезда».

Внимание! Такое разнообразие схем вызвано тем, что собственные обмотки генератора и собственные обмотки нагрузки могут быть соединены по-разному. При различных типах сопряжения получаются разные соответствия между фазными и линейными значениями

Соединение может быть выполнено на заводе при сборке генератора, к месту подсоединения питающего кабеля уже выведены вторые концы обмоток. Информация о схеме соединения обмоток наносится на прикреплённую к статору машины табличку.

На электрических двигателях, трансформаторах или иных потребителях также производят необходимые манипуляции по переключению выводов обмоток. На картинке, приведённой ниже, красным маркером отмечены концы обмоток, соединённые перемычкой. Синим маркером – фазы питания.

Соединения на борно двигателя

Соединение звездой

Буквенное обозначение начала обмоток – «А», «В», «С», концов – «X», «Y», «Z». Нулевая точка маркируется как «О». У каждой обмотки есть два конца. При соединении «звезда» все три одноименных вывода обмоток (начала) соединяются между собой в одну точку «О». К свободным концам подключается нагрузка.

Схема соединения обмоток «звездой»

Соединение треугольником

При выполнении этого присоединения на борно ставятся перемычки, включающие обмотки в следующей последовательности:

  • конец «А» – с началом «В»;
  • конец «В» – с началом «С»;
  • конец «С» – с началом «А».

Графическое изображение катушек становится похожим на треугольник, отсюда пошло название.

Когда хотят использовать подключаемый асинхронный двигатель с максимальным коэффициентом полезного действия, то его обмотки соединяют в треугольник. В этом случае фазные напряжения совпадают (Uл = Uф), линейный ток будет вычисляться по формуле:

Iл = √3*Iф.

Подключая в качестве нагрузки двигатель, необходимо учесть ряд нюансов:

  • достигается увеличение мощности в 1,5 раза;
  • повышается значение пускового тока, по сравнению с рабочим в 7 раз из-за тяжёлого запуска;
  • резкое увеличение нагрузки на валу электромашины будет вызывать резкое увеличение тока.

Из-за всего этого есть риск возникновения перегрева машины, что не происходит при соединении обмоток нагрузки по схеме «звезда». Там двигатель не расположен к перегреванию, и его пуск осуществляется плавно.

Включение обмоток по схеме «треугольник»

При двух видах включения обмоток различают и дают определение двум видам токов: линейному и фазному. Запомнить различия просто:

  • ток, протекающий через проводник, который соединяет источник с приёмником, называется линейным;
  • ток, движущийся по обмоткам источника или нагрузки, называется фазным.

Стоит обратить внимание на формулы мощности при различных схемах соединения источника с нагрузкой. Мощность тока при схеме «звезда» определяется по формуле:

Мощность тока при схеме «звезда» определяется по формуле:

P = 3*Uф*Iф*cosϕ = √3*Uл*Iл*cosϕ,

где:

  • Uф – фазное напряжение;
  • Uл – линейное напряжение;
  • Iф – фазный ток;
  • Iл – линейный ток;
  • cosϕ – сдвиг фаз.

Мощность тока при схеме «треугольник» вычисляется по формуле:

P = 3* Uф* Iф*cosϕ = √3*Uл*Iл*cosϕ.

К сведению

Обращать внимание на линейный и фазный токи необходимо тогда, когда генератор (источник) нагружается несимметрично при подключении нагрузки

Соединения в трёхфазной цепи

Схема сдвига фаз токов конденсаторами и дросселем: что мне не понравилось

Это третья обещанная в заголовке конструкция, которую я реализовал два десятка лет назад, проверил в работе, а потом забросил. Она позволяет использовать до 90% трехфазной мощности двигателя, но обладает недостатками. О них позже.

Собирал я преобразователь трехфазного напряжения на мощность 1 киловатт.

В его состав входят:

  • дроссель с индуктивным сопротивлением на 140 Ом;
  • конденсаторная батарея на 80 и 40 микрофарад;
  • регулируемый реостат на 140 Ом с мощностью 1000 ватт.

Одна фаза работает обычным способом. Вторая с конденсатором сдвигает ток вперед на 90 градусов по ходу вращения электромагнитного поля, а третья с дросселем формирует его отставание на такой же угол.

В создании фазосдвигающего магнитного момента участвуют токи всех трех фаз статора.

Корпус дросселя пришлось собирать механической конструкцией из дерева на пружинах с резьбовой настройкой воздушного зазора для наладки его характеристик.

Конструкция реостата — это вообще «жесть». Сейчас его можно собрать из мощных сопротивлений, купленных в Китае.

Мне даже приходила мысль использовать водяной реостат.

Но я от нее отказался: уж слишком опасная конструкция. Просто намотал на асбестовой трубе толстую стальную проволоку для проведения эксперимента, положил ее на кирпичи.

Когда запустил двигатель циркулярной пилы, то он работал нормально, выдерживал приложенные нагрузки, нормально распиливал довольно толстые колодки.

Все бы хорошо, но счетчик намотал двойную норму: этот преобразователь берет такую же мощность на себя, как и двигатель. Дроссель и проволока неплохо нагрелись.

Из-за высокого потребления электроэнергии, низкой безопасности, сложной конструкции я не рекомендую такой преобразователь.

Cхема щита учета электроэнергии 380в для частного дома 15 квт

При подключении частного дома к электросети, вам обязательно потребуется получить у электросбытовой компании (Мосэнерго, Ленэнерго, Свердловэнерго и др., в зависимости региона) ТУ – Технические условия на подключение. Именно этот документ содержит основные характеристики электросети доступные вам, в том числе и требования к щиту учета электроэнергии.

В этой статье мы подробно осмотрим схему типового щита учета, а также его модификаций, которые предписывают собирать требования ТУ.

Cтандартные в таких случаях параметры сети для подключения частного дома это:

– 3 фазы

– Напряжение: 380В

– Выделенная мощность: 15 кВт

– Вводной кабель: СИП 4х жильный (3 фазных проводника и PEN)

Отмечу, что одна из основных задач ТУ, не только обеспечить безопасность электроустановки, но и предотвратить возможность хищения электричества потребителями.

Именно поэтому, все устройства защиты или коммутации в электрощите, расположенные до электрического счетчика, должны быть защищены от возможности нелегального подключения. Обычно они скрыты в отдельных боксах, которые при подключении пломбируют.

Кроме того, технические условия предписывают размещать щит учета в доступном для проверки месте – на границе участка, на опоре освещения или заборе.

Чаще всего такие внещние щиты используются исключительно для учета, без дополнительных возможностей, несет лишь базовые функции. Основной распределительный щит (РЩ), при этом, ставится внутри в дома, где все потребители разделяются на группы, распределяется нагрузка, устанавливается соответствующая защитная автоматика и т.д.

Все представленные ниже схемы будут рассчитаны под две самые популярные в частных домах системы заземления TT и TN-C-S. Под каждым вариантом подключения – будут ссылки на пошаговую инструкцию по сборке, с подробными комментариями.

Если же вы не определились, какую из систем заземления выбрать – вам поможет следующая информация:

TN-C-S – рекомендуемая правилами система заземления. Имеет ряд недостатков, применять её стоит если вы уверены в состоянии подходящих к дому электросетей, если они достаточно новые и регулярно обслуживаются.

TT – относительно более безопасная система. К главным недостаткам можно отнести лишь большие затраты как на монтаж защитного оборудования и устройство контура заземления, так и на регулярное обслуживание. Которые, для безопасной работы, должны всегда поддерживаться вами в работоспособном состоянии.

Подробнее о разнице в устройстве систем заземления вы узнаете в одной из следующих статей. Подписывайтесь на нашу группу Вконтакте, следите за выходом новых материалов.

Вариант электрического щита частного дома с УЗИП

Установка УЗИП именно в электрощите учёта, правильное решение, особенно с точки зрения безопасности.

Подключаются устройства защиты от импульсных перенапряжений параллельно электрической цепи (номер 7), следующим образом:

Щит учета электрической энергии с УЗИП, заземление ТТ

Монтировать УЗИП или нет, решать вам. Зависит это от многих факторов, которые необходимо учитывать. Если же решитесь, эти схемы вам помогут.

Нередко, в накладном уличном электрощите, кроме указанного выше оборудования, требуется установить еще какие-то модульные устройства, например, коммутационные. В частности, очень полезен бывает, особенно на этапе строительства, обычный механизм розетки.

К нему можно подключить электроинструмент, прожектор или любой другой электроприбор, которым нужно воспользоваться на улице. Других способов подключиться к электросети зачастую нет.

Выводы

Итак, подключение трехфазной сети подойдет:

  • Тем, кто хочет получить стабильное напряжение без перекосов. Если ваш дом находится далеко от трансформаторной подстанции, и вы страдаете от падения напряжения на фазе, тогда трехфазная сеть — это ваше спасение.
  • Тем, кто приобрел трехфазное оборудование. Если планируется отопление в доме электрокотлом или установка насосной станции, тогда без напряжения в 380 В просто не обойтись.
  • Тем, у кого бытовых приборов и электроники накопилось больше, чем на 5 кВт. Для таких потребителей есть смысл получить технические условия от энергосбыта на 10 — 15 кВт с возможностью подключения трехфазной сети.

Вам не нужны три фазы, если:

  • У вас только однофазное оборудование суммарной мощностью не более 5 кВт и постоянное стабильное напряжение на одной фазе.
  • Если вы не хотите делать у себя глобальный ремонт и переплачивать за дорогостоящее оборудование.
  • Варим все, что из металла: как выбрать сварочный инвертор?
  • Вкручиваем по полной: рейтинг сетевых шуруповертов 2019
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector