Драйверы для светодиодов: виды, назначение, подключение
Содержание:
- SN3350
- Принцип работы
- Основные характеристики драйверов
- Виды преобразователей тока по типу устройства
- Драйверы для светодиодов: где купить и сколько стоят
- Линейный светодиодный драйвер своими руками.
- Что такое драйвер для светодиода и для чего он нужен?
- Понятие сетевого драйвера и его предназначение
- Изготовление драйвера светодиодов на 220В своими руками
- Как проверить работоспособность?
- Самостоятельная сборка преобразователя для светодиодов 220 В
- Схемы драйверов (микросхемы) для светодиодов
- Срок эксплуатации
- Как рассчитать
- Срок годности
- Конструктивная схема: особенности устройства
- Ремонт драйвера (LED) фонарей
- Что такое драйверы для светодиодов и зачем они нужны
- Срок эксплуатации
- QX5241
- Как работает драйвер
- Как подобрать драйвер
- Какими бывают драйверы для светодиодов по типу устройства
- Как подобрать
- Ремонт светодиодной лампы с заменой драйвера для светодиодов
SN3350
SN3350 — очередная недорогая микросхема для светодиодных драйверов (13 руб/штучка). Является практически полным аналогом PT4115 с той лишь разницей, что напряжение питания может лежать в диапазоне от 6 до 40 вольт, а максимальный выходной ток ограничен 750 миллиамперами (длительный ток не должен превышать 700 мА).
Как и все вышеописанные микросхемы, SN3350 представляет собой импульсный step-down преобразователь с функцией стабилизации выходного тока. Как обычно, ток в нагрузке (а в нашем случае в роли нагрузки выступают один или несколько светодиодов) задается сопротивлением резистора R:
R = 0.1 / ILED
Чтобы не превысить значение максимального выходного тока, сопротивление R не должно быть ниже 0.15 Ом.
Микросхема выпускается в двух корпусах: SOT23-5 (максимум 350 мА) и SOT89-5 (700 мА).
Как обычно, подавая постоянное напряжение на вывод ADJ, мы превращаем схему в простейший регулируемый драйвер для светодиодов.
Особенностью данной микросхемы является несколько иной диапазон регулировки: от 25% (0.3В) до 100% (1.2В). При снижении потенциала на выводе ADJ до 0.2В, микросхема переходит в спящий режим с потреблением в районе 60 мкА.
Типовая схема включения:
Остальные подробности смотрите в спецификации на микросхему (pdf-файл).
Принцип работы
Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.
Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.
Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.
Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.
Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.
Подключим так же резистор 40 Ом к драйверу 300 мА.
Драйвер создаст на резисторе падение напряжения 12 В.
Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:
Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.
Основные характеристики драйверов
Ключевые параметры приборов для преобразования тока, на которые нужно опираться при выборе:
- Номинальная мощность устройства. Она указана в диапазоне. Максимальное значение обязательно должно быть немного больше, чем потребляемая мощность, подключаемого осветительного прибора.
- Напряжение на выходе. Значение должно быть больше или равно общей сумме падения напряжения на каждом элементе схемы.
- Номинальный ток. Должен соответствовать мощности прибора, чтобы обеспечивать достаточную яркость.
В зависимости от этих характеристик, определяют какие LED-источники можно подключить при помощи конкретного драйвера.
Вся важная информация есть на корпусе устройства
Виды преобразователей тока по типу устройства
Производятся драйверы двух типов: линейные и импульсные. У них одна функция, но сфера применения, технические особенности и стоимость различаются. Сравнение преобразователей разных типов представлено в таблице:
Тип устройства | Технические характеристики | Плюсы | Минусы | Сфера применения |
Линейный |
Генератор тока на транзисторе с p-каналом, плавно стабилизирует ток при переменном напряжении | Не создает помех, недорогой | КПД менее 80%, сильно нагревается | Маломощные светодиодные светильники, ленты, фонарики |
Импульсный |
Работает на основе широтно-импульсной модуляции | Высокий КПД (до 95%), подходит для мощных приборов, продлевает срок службы элементов | Создает электромагнитные помехи | Тюнинг автомобилей, уличное освещение, бытовые LED-источники |
Драйверы для светодиодов: где купить и сколько стоят
Приобрести стабилизаторы для светодиодных ламп и микросхемы к ним можно в магазине радиодеталей, электротехники и на многих торговых интернет-площадках. Последний вариант – самый экономичный. Стоимость устройства зависит от его технических характеристик, типа и производителя. Средние цены на некоторые виды драйверов приведены в таблице ниже:
Модель | Технические параметры | Цена, руб. |
DC12V |
|
190 |
LB0138 |
|
160 |
YW-83590 |
|
680 |
LB009 |
|
730 |
Микросхема PT4115 стоит от 40 до 150 рублей за штуку. Стоимость более мощных элементов колеблется от 100 рублей до нескольких тысяч.
Линейный светодиодный драйвер своими руками.
Эта часть статьи посвящена радиолюбителям.
Оригинальный линейный источник тока на компараторе.
Это весьма интересная схема. В качестве ключевого элемента выступает униполярный (полевой) транзистор. Степенью его открытия управляет микросхема – квадрантный компаратор напряжения. Возможно, эта схема покажется сложной, но тем не менее ее можно смело отнести к линейным источникам тока, так как управление током осуществляется через соединение «исток-сток». Степень открытия зависит от приложенного к затвору напряжения. Регулировка достигается за счет связи одного из входов компаратора и напряжения со стока. VD1 выполняет функцию защиты.
Что такое драйвер для светодиода и для чего он нужен?
Выражаясь по-научному, LED-драйвером называют электронное устройство, основным выходным параметром которого является стабилизированный ток. Именно ток, а не напряжение. Устройство со стабилизацией напряжения принято именовать «блоком питания» с указанием номинального выходного напряжения. Его используют для запитки светодиодных лент, модулей и LED-линеек. Но речь пойдет не о нём.
выхвых
К стабилизатору с разбросом напряжений на выходе 9-21 В и током 780 мА можно подключить от трех до шести светодиодов по 3 Вт каждый. Такой драйвер считается более универсальным, но имеет меньший КПД при включении с минимальной нагрузкой.
Немаловажным параметром светодиодного драйвера является мощность, которую он может отдать в нагрузку. Не стоит пытаться выжать из него максимум. Особенно это касается радиолюбителей, которые мастерят последовательно-параллельные цепочки из светодиодов с выравнивающими резисторами, а потом этой самодельной матрицей перегружают выходной транзистор стабилизатора.
Электронная часть драйвера для светодиода зависит от многих факторов:
- входных и выходных параметров;
- класса защиты;
- применяемой элементной базы;
- производителя.
Современные драйверы для светодиодов изготавливают по принципу ШИМ-преобразования и с помощью специализированных микросхем. Широтно-импульсные преобразователи состоят из импульсного трансформатора и схемы стабилизации тока. Они питаются от сети 220 В, имеют высокий КПД и защиту от короткого замыкания и перегрузки.
Драйверы на базе одной микросхемы более компактны, так как рассчитаны на питание от низковольтного источника постоянного тока. Они также обладают высоким КПД, но их надёжность ниже из-за упрощенной электронной схемы. Такие устройства очень востребованы при светодиодном тюнинге автомобиля. В качестве примера можно назвать ИМС PT4115, о готовом схемотехническом решении на основе этой микросхемы можно прочесть в данной статье.
Понятие сетевого драйвера и его предназначение
Драйвер — электронный компонент, на который поступает напряжение переменного тока, происходит стабилизация и выходит напряжение постоянного тока
Здесь важно понимать, что речь идет о получении тока. Для преобразования напряжения используются обычные блоки питания (на корпусе указывается значение выходного напряжения)
Блоки питания эксплуатируются в диодных лентах.
Главная характеристика преобразователя для светодиодных осветительных приборов — выходной ток. Для нагрузки используют вспомогательные led-диоды или другие полупроводники. Практически всегда драйвер питается от промышленной сети 220 В, а диапазон напряжения на выходе начинается от 2 – 3 и заканчивается десятками Вольт. Чтобы подключить три светодиода на 3 Вт, необходим электронный драйвер с выходным напряжением 9 – 21 В и током 780 мА. При небольшой нагрузке универсальное устройство характеризуется низким коэффициентом полезного действия (КПД).
Для питания фар транспортных средств применяют источник с постоянным напряжением от 10 до 35 В. Если мощность невысокая, драйвер необязателен, но потребуется соответствующий резистор. Данный компонент — незаменимая часть бытового выключателя, но при коммутации led-диода к переменной сети 220 В нельзя рассчитывать на надежную и долговечную работу.
Изготовление драйвера светодиодов на 220В своими руками
Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.
В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.
Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:
- Делитель напряжения на ёмкостном сопротивлении;
- диодный мост;
- каскад стабилизации напряжения.
Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).
При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.
Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.
Третий каскад – сглаживающий стабилизирующий фильтр.
Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.
В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.
Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.
Как проверить работоспособность?
Чтобы проверить драйвер без нагрузки, достаточно подать на вход блока 220 В. Если устройство исправно, на выходе появится постоянное напряжение. Его значение будет немного больше верхнего предела, указанного в маркировке драйвера.
Если, к примеру, на стабилизаторе стоит диапазон 27-37 В, то на выходе должно быть около 40 В. Чтобы поддерживать ток в заданном диапазоне, при увеличении сопротивления нагрузки (без нагрузки оно стремится к бесконечности) напряжение также растёт до определенного предела.
Данный способ проверки прост и доступен, но не позволяет делать однозначные выводы о 100%-ной исправности устройства. Попадаются драйвера, которые после включения без нагрузки не запускаются или ведут себя непонятным образом.
Второй вариант проверки:
- Подключите к выходу драйвера резистор, подобрав его сопротивление на основе закона Ома. К примеру, мощность драйвера 20 Вт, ток на выходе 600 мА, напряжение – 25-35 В. Искомое сопротивление будет составлять 38-58 Ом.
- Подберите сопротивление из заданного диапазона и с соответствующей мощностью. Даже если она будет небольшой, то этого вполне хватит для проверки.
- Подключите резистор и замерьте тестером выходное напряжение. Если оно в заданных пределах, то драйвер точно исправен.
При поиске поломок необходимо учитывать принцип устройства схемы. В линейных и импульсных схемах поломки могут быть связаны с определенными проблемами. Возможные неисправности:
- В линейных стабилизаторах для защиты от перепадов напряжения применяют пару резисторов сопротивлением от 5 до 100 Ом. Один стоит на входе диодного моста, второй – на выходе. Чтобы уменьшить мерцание, параллельно нагрузке включают конденсатор-электролит максимальной емкости. Неисправности линейных драйверов могут быть связаны с перегоранием одного или сразу двух защитных резисторов.
- В импульсных преобразователях тока микросхемы защищены от перегрузки, перегрева и перенапряжения и по идее не могут сломаться. На деле же любая микросхема, особенно в драйверах китайского производства, может прийти в негодность. Проблема усложняется тем, что многим китайским микросхемам трудно найти замену. Некоторые из них невозможно найти даже в интернете.
Самостоятельная сборка преобразователя для светодиодов 220 В
Рассмотренная схема напоминает блок питания импульсного типа. Для примера возьмем простой блок питания импульсного типа, не имеющий гальванической развязки. Главные преимущества подобной схемы — простота и надежность.
Простейшая схема преобразователя тока на 220 В содержит три каскада:
- делитель напряжения с емкостным резистором;
- несколько диодов (мост);
- стабилизатор напряжения.
В первом каскаде емкостной резистор используется для самостоятельной подзарядки конденсатора, не имеет отношения к работе самой схемы. Номинал не имеет значения и обычно составляет от 100 кОм до 1 МОм при мощности не более 1 Вт. В этих целях нельзя выбирать электролитический конденсатор.
Ток через конденсатор проходит до тех пор, пока он полностью не зарядится. Чем ниже емкость конденсатора, тем быстрее завершится процесс. Конденсатор на 0,3 мкФ пропустит через себя меньшую часть от общего напряжения сети.
Диодный мост используется для трансформации переменного напряжения в постоянное. После того как конденсатор «отсечет» практически весь вольтаж, диодный мост выдаст постоянный ток с напряжением 20 – 22 В.
На третьем каскаде устанавливают сглаживающий фильтр для стабилизации напряжения. Конденсатор и диодный мост уменьшают напряжение. Любые изменения напряжения в сети сказываются на выходной амплитуде диодного моста. Для уменьшения пульсации параллельно в схему подключают электролитический конденсатор.
Схемы драйверов (микросхемы) для светодиодов
Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.
ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.
Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.
Простой драйвер тока на этой микросхеме представлен ниже.
Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.
Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:
Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора RON.
Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.
Срок эксплуатации
Даже сами производители заявляют о том, что драйвер служит меньше, чем оптика. Если последняя рассчитана на 30 тысяч часов, то выпрямитель в лучшем случае проработает 1000 часов. Связан такой разрыв во времени со следующими обстоятельствами:
- перепады напряжения в электросети как в большую, так и в меньшую сторону более чем на 5%;
- разница рабочей температуры в процессе работы;
- повышенная влажность, если речь идет о таких помещениях;
- интенсивность – чем больше работает и меньше выключается, тем длительнее срок работы.
Первое, что принимает на себя основной удар — сглаживающий конденсатор, у которых при повышенной влажности, температуре и при скачках напряжения начинает интенсивно испаряться электролит. При его недостатке уровень пульсаций увеличивает, что и приводит к выходу из строя лед-драйвера.
Но самое интересное, что сокращает срок работы неполная загруженность. Если вы купили элемент на 150 ватт, а нагрузка не превышает 70, оставшиеся 80 будут возвращаться в сеть и провоцировать ее перегруз. Всегда правильно выбирайте рабочие элементы, чтобы максимально сопоставить эффективность и реальные условия.
ВИДЕО: Простой источник питания для светодиодов
Как рассчитать
Для правильной организации электрической цепи важно рассчитать выходные параметры. На основе полученных данных реализуется подбор конкретной модели
Расчет начинается с рассмотрения светодиодов с учетом их напряжения и тока. Характеристики можно увидеть в документах. К примеру, используются диоды напряжением 3,3 В с током 300 мА. Необходимо создать светильник, в котором три светодиода расположены один за другим последовательно. Рассчитывается падение напряжение в цепи: 3,3 * 3 = 9,9 В. Ток в данном случае остается постоянным. Значит пользователю потребуется драйвер с выходным напряжением 9,9 В и силой тока 300 мА.
Конкретно такой блок найти не удастся, поскольку современные приборы рассчитаны на использование в некотором диапазоне. Ток прибора может быть немного меньше, лампа будет менее яркой. Превышать ток запрещено, поскольку такой подход способен вывести прибор из строя.
Теперь требуется определить мощность устройства. Хорошо, если она будет превышать нужный показатель на 10-20%. Расчет мощности осуществляется по формуле, умножая рабочее напряжение на ток: 9,9 * 0,3 = 2,97 Вт.
Рисунок 7. Плата драйвера.
Срок годности
Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:
- низкого качества, с работоспособностью до 20 тысяч часов;
- с усредненными параметрами — до 50 тысяч часов;
- преобразователь, состоящий из комплектующих известных брендов — до 70 тысяч часов.
Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости
Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).
Конструктивная схема: особенности устройства
По внешнему виду лед-лампочки похожи на источники света всех других видов, выпускаются с различными цоколями в форме шара, свечки, груши.
Светодиоды, предназначенные для ламп, тоже разные:
- обычные на пластиковом корпусе (мощные «кукурузы»);
- бескорпусные;
- диодные СОВ-сборки;
- нити на сапфировой, стеклянной или металлической полосе (filament);
- диоды на прозрачной керамике (Crystal Ceramic MCOB).
Доступны светодиодные источники, поддерживающие выключатель с индикацией и диммирование.
Конструктивное устройство светодиодных ламп на 220в:
- корпус;
- отражатель;
- рассеиватель света;
- блок питания (печатная плата с напаянными радиоэлементами).
По конструкции отличаются филаментные лампочки. В них нет платы, ее заменяют стержни, драйвер так же в цоколе. Стержень – это трубка из сапфира или стекла с сечением 2 мм и длиной около 3 см. На стержне расположены миниатюрные светодиоды.
Ремонт драйвера (LED) фонарей
Ремонт переносного источника света зависит от его схемотехнического решения. Если фонарь не горит или светит слабо, сначала проверяют элементы питания и меняют их, если это нужно.
После этого в драйверах с аккумуляторами проверяют тестером или мультиметром детали модуля зарядки: диоды моста, входной конденсатор, резистор и кнопку или переключатель. Если все исправно, проверяют светодиоды. Их подключают к любому источнику питания напряжением 2-3 В через резистор 30-100 Ом.
Рассмотрим четыре типичные схемы фонарей и неисправности, возникающие в них. Первые два работают от аккумуляторов, в них вставлен модуль зарядки от сети 220 В.
Схемы аккумуляторного фонарика с вставленным модулем зарядки 220 В.
В первых двух вариантах светодиоды часто перегорают как по вине потребителей, так и из-за неправильного схемотехнического решения. При извлечении фонаря из розетки после зарядки от сети палец иногда соскальзывает и нажимает на кнопку. Если штыри устройства еще не отсоединились от 220 В, возникает бросок напряжения, светодиоды перегорают.
Во втором варианте при нажатии кнопки аккумулятор подсоединяется к светодиодам напрямую. Это недопустимо, так как они могут выйти из строя при первом же включении.
Ели при проверке выяснилось, что матрицы сгорели – их следует заменить, а фонари доработать. В первом варианте необходимо изменить схему подключения светодиода, показывающего, что аккумулятор заряжается.
Схема драйвера светодиодного фонарика на аккумуляторе с кнопкой.
Во втором варианте вместо кнопки следует установить переключатель, а затем последовательно с каждым источником света припаять по одному добавочному резистору. Но это не всегда возможно, так как часто в фонарях устанавливают светодиодную матрицу. В таком случае к ней следует припаять один общий резистор, мощность которого зависит от типа применяемых LED элементов.
Схема светодиодного фонарика на аккумуляторе с переключателем и последовательно добавленным сопротивлением.
Остальные фонари питаются от батарей. В третьем варианте светодиоды могут сгореть при пробое диода VD1. Если это случилось, надо заменить все неисправные детали и установить дополнительный резистор.
Схема фонарика на батарейках (без добавочного резистора).
Схема фонарика на батарейках (с добавленным в цепь резистором).
Основные элементы последнего варианта фонаря (микросхема, оптрон и полевой транзистор) проверить сложно. Для этого нужны специальные приборы. Поэтому его лучше не ремонтировать, а вставить в корпус другой драйвер.
Что такое драйверы для светодиодов и зачем они нужны
Светимость полупроводникового
лед-кристалла напрямую зависит от силы тока, проходящего через него.
Нестабильность этого параметра, характерная для бытовой сети 220 В, приводит к
быстрой деградации материала и выходу из строя светодиода. Поэтому и требуется
для него драйвер. В его задачу входит преобразование параметров электрического
тока в следующих направлениях:
- Стабилизация силы в точном значении выходных параметров.
- Задание амплитуды.
- Выпрямление из переменного в постоянный.
Особенности драйвера светодиодов на 220 В
Главная особенность
драйвера для светодиодов, питание которых осуществляется от 220 В, состоит в
том, что он изменяет напряжение и предназначен для работы с электрическим током
подобных характеристик. Поэтому для подключения лампочки не пригодны его
низковольтные аналоги – например, от фонарика или автомобиля на 12 вольт. Кроме
того, модели последнего типа могут включать в состав понижающий блок –
трансформатор.
При изготовлении
преобразователя своими руками следует знать его основные характеристики:
- Потребляемый ток. Должен совпадать со значением аналогичного параметра светодиодов, в противном случае они либо не будут выдавать полной яркости, заложенной производителем, либо перегорят.
- Мощность. Эта характеристика выражается в ваттах и равняется суммарной мощности всех led-узлов схемы.
- Напряжение на выходе. Находится в прямой зависимости от способа подключения и количества лед-элементов и падения напряжения на них – рассчитывается из суммарного их значения.
Расчет мощности при выборе ленты из последовательно соединенных светодиодов позволяет правильно подобрать драйвер для питания подсветки от 220 В. Итоговое значение равняется сумме данного параметра всех элементов плюс 25% (запас на возможную перегрузку). Например, в лед-полоске 20 элементов по 0,5 Вт каждый, общее значение составит 10W. Однако на практике лучше купить или изготовить своими руками прибор на 12-13 ватт.
Теория питания светодиодных ламп от 220В
Лэд-лампа, как правило,
представляет собой набор пространственно расположенных в определенной
композиции небольших, но достаточно мощных светодиодов (3,3 вольт и 1 ватт).
Чтобы изготовить своими руками замену стандартной лампочке накаливания в 70-80
Вт, потребуется дюжина недорогих лед-элементов. Однако бытовая сеть 220 В имеет
для них избыточные параметры.
Поэтому потребуется понизить
амплитуд и силу, а также трансформировать переменный электрический ток в
постоянный. Для этого понадобится драйвер, для изготовления своими руками
которого применяется делитель напряжения на емкостной или резисторной нагрузке,
а также стабилизаторы.
Срок эксплуатации
Длительность корректной работы драйвера зависит от его качества и условий эксплуатации. Но даже самый качественный прибор имеет гораздо меньший ресурс, чем подключённые к нему светодиоды.
LED-элементы от известных брендов работают около 100 000 часов. Расчётное время функционирования драйвера:
- низкое качество – до 20 000 часов;
- среднее – до 50 000 часов;
- высокое – до 70 000 часов.
На длительность работы стабилизатора тока для светодиодов влияют внешние факторы. Драйвер может выйти из строя по следующим причинам:
- высокая влажность в помещении, не соответствующая степени защиты устройства;
- резкие температурные перепады;
- некачественная вентиляция;
- неверный расчёт мощности нагрузки.
Чаще всего драйвер ломается из-за конденсатора – он выходит из строя при скачках напряжения в сети.
QX5241
QX5241 — это китайский аналог MAX16819 (MAX16820), но в более удобном корпусе. Также выпускается под наименованиями KF5241, 5241B. Имеет маркировку «5241a» (см. фото).
В одном известном магазине их продают чуть ли не на вес (10 штук за 90 руб).
Драйвер работает по точно такому же принципу, как и все вышеописанные (понижающий преобразователь непрерывного действия), однако не содержит в своем составе выходной ключ, поэтому для работы требуется подключение внешнего полевого транзистора.
Можно взять любой N-канальный MOSFET с подходящим током стока и напряжением сток-исток. Подойдут, например, такие: SQ2310ES (до 20V!!!), 40N06, IRF7413, IPD090N03L, IRF7201. Вообще, чем ниже будет напряжение открытия, тем лучше.
Вот некоторые ключевые характеристики LED-драйвера на QX5241:
- максимальный выходной ток — 2.5 А;
- КПД до 96%;
- максимальная частота диммирования — 5 кГц;
- максимальная рабочая частота преобразователя — 1 МГц;
- точность стабилизации тока через светодиоды — 1%;
- напряжение питания — 5.5 — 36 Вольт (нормально работает и при 38!);
- выходной ток рассчитывается по формуле: R = 0.2 / ILED
Более подробно читайте в спецификации (на инглише).
Светодиодный драйвер на QX5241 содержит мало деталей и собирается всегда по такой схеме:
Микросхема 5241 бывает только в корпусе SOT23-6, так что со паяльником для пайки кастрюль к ней лучше не подходить. После монтажа плату следует хорошенько промывать от флюса, любые непонятные загрязнения могут негативно сказываться на режиме работы микросхемы.
Разница между питающим напряжением и суммарным падением напряжения на диодах должно быть вольта 4 (или больше). Если меньше — то наблюдаются какие-то глюки в работе (нестабильность тока и свист дросселя). Так что берите с запасом. Причем, чем больше выходной ток, тем больше запас по напряжению. Хотя, возможно, мне просто попался неудачный экземпляр микросхемы.
Если входное напряжение меньше, чем общее падение на светодиодах, то генерация срывается. При этом выходной полевик полностью открывается и светодиоды светятся (естественно, не на полную мощность, так как напряжения маловато).
Как работает драйвер
LED-драйвер – источник постоянного тока, который создает на выходе напряжение. В идеале оно не должно зависеть от подаваемой на драйвер нагрузки. Сеть переменного тока характеризуется нестабильностью и нередко в ней наблюдаются значительные перепады параметров. Стабилизатор должен сглаживать перепады и предотвращать их негативное влияние.
К примеру, подключая к источнику напряжения 12 В резистор на 40 Ом можно получить стабильный показатель тока в 300 мА.
Рисунок 2. Внешний вид регулятора.
Если подключить параллельно два одинаковых резистора на 40 Ом, ток на выходе будет составлять уже 600 мА. Такая схема достаточно проста и характерна для самых дешевых электрических приборов. Она не способна автоматически поддерживать нужную силу тока и противостоять пульсациям напряжения в полной мере.
Как подобрать драйвер
Если хотите получить качественное устройство, которое прослужит несколько лет и будет выполнять требуемые функции, рекомендуем избегать приобретения дешевых китайских изделий. Далеко не всегда физические параметры таковых совпадают с заявленными значениями. Не покупайте приборы, у которых отсутствуют гарантийные талоны.
Самый простой, средний по качеству и цене вариант — преобразователь тока без корпуса, подключаемый к промышленной сети напряжением 220 В. Выбирая ту или иную модификацию устройства, можно использовать его для одного или нескольких светодиодов. Это отличные элементы, применяемые в лабораторных исследованиях и экспериментах. Для квартиры и дома желательно покупать драйверы с корпусом, поскольку при его отсутствии снижаются надежность и безопасность эксплуатации.
Какими бывают драйверы для светодиодов по типу устройства
Драйверы для светодиодов классифицируют по типу устройства на линейные и импульсные. Структура и типовая схема драйвера для светодиодов линейного типа представляет собой генератор тока на транзисторе с р-каналом. Такие устройства обеспечивают плавную стабилизацию тока при условии неустойчивого напряжения на входном канале. Они являются простыми и дешевыми устройствами, однако отличаются низкой эффективностью, выделяют при работе много тепла и не могут быть использованы как драйвера для мощных светодиодов.
Импульсные устройства создают в выходном канале ряд высокочастотных импульсов. Их работа основана на принципе ШИМ (широтно-импульсной модуляции), когда средняя величина тока на выходе обуславливается коэффициентом заполнения, т.е. отношением длительности импульса к числу его повторений. Изменение величины среднего выходного тока происходит вследствие того, что частота импульсов остается неизменной, а коэффициент заполнения изменяется от 10-80%.
Благодаря высокому КПД преобразований (до 95%) и компактности устройств, они нашли широкое применение для портативных светодиодных конструкций. Кроме того, эффективность устройств положительно сказывается на длительности функционирования автономных приборов питания. Преобразователи импульсного типа имеют компактные размеры и отличаются обширным диапазоном входных напряжений. Недостатком этих устройств является высокий уровень электромагнитных помех.
КПД светодиодных драйверов достигает 95%
Перед тем как подобрать драйвер для светодиодов, необходимо знать условия его функционирования и место размещения светодиодных приборов. Широтно-импульсные драйверы, в основе которых лежит одна микросхема, имеют миниатюрные размеры и рассчитаны на питание от автономных низковольтных источников. Основное применение этих устройств – тюнинг автомобилей и светодиодная подсветка. Однако ввиду использования упрощенной электронной схемы качество таких преобразователей несколько ниже.
Как подобрать
Чтобы подобрать светодиодный драйвер, необходимо рассматривать комплексно характеристики прибора:
- напряжение на входе и выходе;
- выходной ток;
- мощность;
- уровень защиты от вредных воздействий.
Для начала определяют источник питания. Используются стандартная сеть с переменным напряжением, аккумулятор, блок питания и многое другое. Главное, чтобы входное напряжение было в указанном в паспорте устройства диапазоне. Ток также должен соответствовать входной сети и подсоединенной нагрузке.
Рисунок 5. Виды блоков
Производители выпускают устройства в корпусах или без них. Корпуса эффективно защищают от влаги, пыли и негативных воздействий окружающей среды. Однако для встраивания прибора непосредственно в лампу корпус не обязательный компонент.
Ремонт светодиодной лампы с заменой драйвера для светодиодов
Если вы не хотите заниматься поиском сгоревшей радиодетали или у вас просто нет такой возможности. Скажем, нет в настоящее время мультиметра для проверки детали, то можно поступить несколько проще. Идете до ближайшего радиомагазина в вашем городе и покупаете так называемый драйвер. По сути, стабилизатор напряжения для светодиодов
Здесь важно выбрать стабилизатор, который будет обеспечивать работу светодиодов нужной мощности. То есть смотрим на заявленную мощность лампы и просим драйвер, который может обеспечить данную мощность. Теперь давайте вновь обратимся к конкретному случаю
Откручиваем отражатель от корпуса.
Снимаем рассеиватели светодиодов.
Обрезаем провода от старого драйвера, лучше выпаять, чтобы обеспечить соединение между платой драйвера одним цельным проводом.
Припаиваем провода нового драйвера на место старых.
Здесь важно не перепутать вход и выход, иначе все сгорит, так и не заработав
Еще раз все проверяем и собираем лампу обратно. При необходимости изолируем драйвер и наносим термопасту. Этот вариант хорош тем, что здесь фактически необходимо перекусить провода на входе и на выходе у старого драйвера, подключить провода от новой платы и все. Лампу можно собирать обратно. Единственное ограничение, этот вариант не подойдет в случае, если неисправностью является перегоревший светодиод.
Если вам негде купить драйвер, а может просто хотите испытать свои силы в радиоконструировании, то вы можете сделать его сами. Благо некоторые из схем довольно простые в сборке, потребуют минимум радиоэлементов, и не нуждаются в наладке. Электросхемы драйверов для светодиодов, которые можно применить, в том числе и для светодиодной лампы, приведены в нашей статье «Драйверы для светодиодов своими руками». О самой же светодиодной лампе можно узнать подробнее «Светодиодная лампа».