Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Содержание:

Самодельный регулированный блок питания на одном транзисторе

Какой можно сделать самому самый простой регулированный блок питания? Это получится сделать на микросхеме lm317. Она уже сама с собой представляет почти блок питания. На ней можно изготовить как регулируемый по напряжению блок питания, так и потоку. В этом видео уроке показано устройство с регулировкой напряжения. Мастер нашёл несложную схему. Входное напряжение максимальное 40 вольт. Выходное от 1,2 до 37 вольта. Максимальный выходной ток 1,5 ампер.

Скачать схему с платой.

Без теплоотвода, без радиатора максимальная мощность может быть всего 1 ватт. А с радиатором 10 ватт. Список радиодеталей.

Подключим на выход устройства электронную нагрузку. Посмотрим, насколько хорошо держит ток. Выставляем на минимум. 7,7 вольта, 30 миллиампер.

Видео Radioblogful. Видеоблог паяльщика.

Как произвести расчет трансформатора

Допустим, вы решили намотать вторичную обмотку трансформатора самостоятельно. Для этого вам надо будет узнать величину главного параметра – напряжения, которое можно будет снять с одного витка. Это самый простой способ, которым можно воспользоваться при изготовлении трансформатора. Намного сложнее вычислить все параметры, если требуется намотка не только вторичной, но и первичной обмотки. Необходимо для этого знать сечение магнитопровода, его проницаемость и свойства. Если рассчитывать блок питания 12В 5А самому, то этот вариант получается более точным, нежели подстраиваться под готовые параметры.

Первичную обмотку наматывать сложнее, чем вторичную, так как в ней может быть несколько тысяч витков тонкого провода. Можно упростить задачу и самодельный блок питания изготовить при помощи специального станка.

Чтобы рассчитать вторичную обмотку, нужно намотать 10 витков тем проводом, который планируете использовать. Соберите трансформатор и, соблюдая технику безопасности, подключите его первичную обмотку к сети. Проведите замер напряжения на выводах вторичной обмотки, полученное значение разделите на 10. Теперь число 12 разделите на полученное значение. И получаете количество витков, необходимое для вырабатывания 12 Вольт. Можно добавить немного, чтобы компенсировать падение напряжения (достаточно увеличить на 10%).

Блок питания своими руками: как сделать универсальный источник питания

Блок питания является неотъемлемым требованием любой техники. Благодаря этому устройству удается регулировать уровень напряжения, тем самым предотвращая преждевременную поломку электрической конструкции.

Сегодня собрать регулируемый блок питания своими руками достаточно просто. В интернете представлено множество схем, которые помогают облегчить поставленную задачу даже для новичков радиолюбителей. Процесс изготовления этой конструкции довольно увлекательное и интересное занятие.

Перед тем как приступить к рабочему процессу, необходимо подобрать простую схему для изготовления блока питания. Чем легче чертеж, тем быстрее удастся собрать установку. В специализированных магазинах представлен широкий ряд радио и электрических деталей для данной конструкции.

Разновидности и типы блоков питания

Перед тем как приступить к сборке устройства, необходимо ознакомиться с видами и типами блоков питания. Каждая модель имеет свои характерные особенности.

К ним относят:

  • стабилизированные типы. Они отвечают за бесперебойную работу электрического устройства;
  • бесперебойные виды. Они позволяют работать прибору даже при отключении от электрической цепи.

Классификация по принципу работы

По принципу работы они классифицируются на следующие типы. К ним относят:

Импульсный. Он представляет собой инверторную систему, в которой происходит преобразование переменного тока в постоянное высокочастотное напряжение.

Для того чтобы сделать импульсный блок питания своими руками необходимо приобрести специальную гальваническую развязку, которая будет передавать преобразованную мощность к трансформаторной установке.

Трансформаторный. Он состоит из понижающего трансформатора и специального выпрямителя. Он в дальнейшем преобразовывает переменную мощность в постоянную. Здесь дополнительно устанавливают фильтр-конденсатор. Он позволяет сгладить чрезмерную пульсацию и колебания в процессе работы устройства.

Мастер-класс по изготовлению регулируемого блока питания

Как сделать подобное устройство в домашних условиях? Подробная инструкция как сделать блок питания своими руками поможет справиться с поставленной задачей. Первым делом необходимо иметь четкое представление, для каких целей будет собрано это устройство.

Главными принципами работы сооружения является подача максимального тока, который в дальнейшем будет направлен в сторону нагрузки. Помимо этого он будет обеспечивать выходное напряжение. Благодаря этому электрический прибор может нормально функционировать.

Например, устройство на выходе дает от 3 до 15 Вт, а прибор требует 5 Вт. Для этого определенным положением регулятора меняем диапазон преобразованной мощности.

Из чего можно сделать блок питания?

Для понадобятся следующие детали:

  • трансформатор;
  • диодный мост;
  • микросхема;
  • конденсаторный фильтр;
  • дросселя;
  • блоки защиты;
  • стабилизатор напряжения.

Трансформатор может иметь мощность в пределах 10 Вт. Как правило, его обмотка способна выдержать напряжение от 220 Вт до 250 вт. Вторичная обмотка проводит от 20 до 50 Вт.

Эту деталь можно купить в специализированном отделе или найти в любом старом электроприборе.

Микросхема выпускается под определенной маркировкой (PDIP – 8). Здесь можно делать неограниченное количество проводящих электрических дорожек.

Диодный мост делают из четырех диодов размером 0,2 х 0,5 мм. Изделия серии SOIC значительно уменьшают перепады электрического напряжения.

Блоки защиты будут выполнены из двух предохранителей марки FU2. При срабатывании данных изделий вырабатывается ток мощностью 0,16А. Дроссели L1 и L2 можно сделать самостоятельно. Для этого понадобятся два элемента из магнитного феррита. Их размер должен быть К 17,5 х 8,3 х 6 мм.

Подсоединение всех элементов осуществляются по определенной схеме, которая представлена ниже. Здесь каждая деталь обозначена соответствующим обозначением. На фото самодельного блока питания изображено готовое устройство.

Как все работает

Перед тем, как сделать ЛБП самому, необходимо определиться с принципом работы аппарата и используемыми деталями. В комплект входит трансформатор. На вторичной обмотке он имеет выход в 3 А и 24 В. Для контактов используются клемма 1 и 2

Важно учесть, что именно он оказывает влияние на качество выходного сигнала

Лабораторный БП на Ардуино

Собираемый прибор с предрегулятором имеет диодный мост, выпрямляющий напряжение. Он собран из элементов от D1 до D4. Избавиться от возможных пульсаций помогает установленный фильтр. Он включает в себя конденсатор и резистор. В цепи присутствуют определенные особенности, отличающие сборку его из компьютерного железа.

Обычно применяют для управления выходным напряжением обратную связь. В предлагаемой схеме для данной цели к блоку питания в лабораторной схеме предлагается использовать операционный усилитель. Это позволит сформировать необходимый константный вольтаж. На выходных клеммах он будет наддать до уровня U1.

Регулируемый блок питания лабораторный на lm317 (схема)

В цепи участвует диод D8 с напряжением 5,6 В (зенеровский). Он эксплуатируется с нулевым температурным коэффициентом. Также напряжение падает на выходе U1, выключая D8. После такого события происходит стабилизация цепи, а заряженный поток идет к точке сопротивления R5. Протекающий поток по оперусилителю варьируется незначительно, соответственно он тоже пойдет по точке R6, а также R5. При том, что один и другой рассчитаны для одинакового напряжения, то общий их показатель будет удвоен, ведь это сопоставимо с параллельным соединением.

В результате получим в блоке питания с предрегулятором на выходе из усилителя напряжение в 11,2 В. Схема будет иметь значение усиления в трехкратных пределах.

Корректировать выходные параметры в вольтах помогают элемент сопротивления R10 и RV1. Второй является триммером. В такой ситуации удается снизить вольтаж практически до нуля, несмотря на количество имеющихся потребителей.

С помощью такого агрегата удается сформировать наибольший ток на выходе, получаемый из PSU. Для обеспечения такого явления создаем падение вольт на R7. Он имеет прямую связь с нагрузкой. Выход U3 инвертирует сигнал с нулевым вольтажом, отправляя его на R21.

Схематическое изображение функционала

Предположим, что для последнего выхода имеется несколько вольт. Именно Р2 помогает своей установкой в схеме обеспечить на выходе сигнал в 1 В. При повышении нагрузки получим константное напряжение. После этого установленный R7 будет оказывать не такое существенное влияние на процессы. Этому способствует пониженное его значение. Когда потребители и вольтаж стабильны, то система работает слаженно. Если повышать количество потребителей, то вольтаж на R7 повысится более чем одного вольта. U3 функционирует и сбалансирует имеющиеся показатели к исходным значениям.

Структурная схема БП компьютера АТХ

Блок питания компьютера является довольно сложным электронным устройством и для его ремонта требуются глубокие знания по радиотехнике и наличие дорогостоящих приборов, но, тем не менее, 80% отказов можно устранить самостоятельно, владея навыками пайки, работы с отверткой и зная структурную схему источника питания.

Практически все БП компьютеров изготовлены по ниже приведенной структурной схеме. Электронные компоненты на схеме я привел только те, которые чаще всего выходят из строя, и доступны для самостоятельной замены непрофессионалам. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов.

Питающее напряжение с помощью подается через разъемное соединение на плату блока питания. Первым элементом защиты является предохранитель Пр1 обычно стоит на 5 А. Но в зависимости от мощности источника может быть и другого номинала. Конденсаторы С1-С4 и дроссель L1 образуют фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети.

Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. Максимальная эффективность работы фильтра возможна только при подключении к сети с заземляющим проводом. К сожалению, в дешевых китайских источниках питания компьютеров элементы фильтра зачастую отсутствуют.

Вот тому пример, конденсаторы не установлены, а вместо дросселя запаяны перемычки. Если Вы будете ремонтировать блок питания и обнаружите отсутствие элементов фильтра, то желательно их установить.

Вот фотография качественного БП компьютера, как видно, на плате установлены фильтрующие конденсаторы и помехоподавляющий дроссель.

Для защиты схемы БП от скачков питающего напряжения в дорогих моделях устанавливаются варисторы (Z1-Z3), на фото с правой стороны синего цвета. Принцип работы их простой. При нормальном напряжении в сети, сопротивление варистора очень большое и не влияет на работу схемы. В случае повышении напряжения в сети выше допустимого уровня, сопротивление варистора резко уменьшается, что ведет к перегоранию предохранителя, а не к выходу из строя дорогостоящей электроники.

Чтобы отремонтировать отказавший блок по причине перенапряжения, достаточно будет просто заменить варистор и предохранитель. Если варистора под руками нет, то можно обойтись только заменой предохранителя, компьютер будет работать нормально. Но при первой возможности, чтобы не рисковать, нужно в плату установить варистор.

В некоторых моделях блоков питания предусмотрена возможность переключения для работы при напряжении питающей сети 115 В, в этом случае контакты переключателя SW1 должны быть замкнуты.

Для плавного заряда электролитических конденсаторов С5-С6, включенных сразу после выпрямительного моста VD1-VD4, иногда устанавливают термистор RT с отрицательным ТКС. В холодном состоянии сопротивление термистора составляет единицы Ом, при прохождении через него тока, термистор разогревается, и сопротивление его уменьшается в 20-50 раз.

Для возможности включения компьютера дистанционно, в блоке питания имеется самостоятельный, дополнительный маломощный источник питания, который всегда включен, даже если компьютер выключен, но электрическая вилка не вынута из розетки. Он формирует напряжение +5 B_SB и построен по схеме трансформаторного автоколебательного блокинг-генератора на одном транзисторе, запитанного от выпрямленного напряжения диодами VD1-VD4. Это один из самых ненадежных узлов блока питания и ремонтировать его сложно.

Необходимые для работы материнской платы и других устройств системного блока напряжения при выходе из блока выработки напряжений фильтруются от помех дросселями и электролитическими конденсаторами и затем посредством подаются к источникам потребления. Кулер, который охлаждает сам блок питания, запитывается, в старых моделях БП от напряжения минус 12 В, в современных от напряжения +12 В.

Как сделать блок питания?

У начинающего радиолюбителя когда-нибудь возникнет вопрос: как сделать простой блок питания самостоятельно в домашних условиях.

Перво-наперво необходимо определить, какой именно блок питания нужен и для каких точно целей. Блоки питания могут использоваться в разных сферах многими домашними мастерами.

Для того, чтобы сделать самостоятельно блок питания, необходимо разобраться с тем, как он устроен и как работает. Это поможет в дальнейшем осуществлять небольшой ремонт устройства при необходимости.

Определяем, какой именно блок нужен – регулируемый либо нет. Заранее, перед выполнением работ, необходимо найти все инструкции и схемы блоков питания, которые помогут сделать нужный вам прибор.

Регулируемый – это прибор, у которого можно изменить выходное напряжение (допускается изменение в пределах от 3 до 12 вольт). Например, если мы хотим получить 7 или 10 вольт – нам нужно будет всего лишь повернуть ручку регулятора.

Нерегулируемый прибор – имеет фиксированное выходное напряжение, которое нельзя изменить. К примеру, блок питания «Электроника» Д2-27 нельзя регулировать, и он выдает на выходе всегда 12 вольт.

Самые интересные для радиолюбителей являются регулируемые блоки питания. Они позволяют запитать достаточно много устройств (самодельных либо промышленных), которым понадобится разное напряжение питания.

Фото самодельного блока питания можно найти в журналах для радиолюбителей либо в интернете.

Виды и особенности блоков питания

Встречаются два типа блоков питания:

  • Импульсный;
  • Линейный.

Блок импульсного типа может рождать помехи, которые буду отражаться на настройке приемников и других передатчиков. Блок питания линейного типа может оказаться неспособным для выдачи необходимой мощности.

Как правильно сделать лабораторный блок питания, от которого можно будет заряжать АКБ, и питать, чувствительны платы схем? Если взять простой блок питания линейного типа на 1,3-30 В, и мощностью тока не более 5 А, то получится хороший стабилизатор напряжения и тока.

Воспользуемся классической схемой для сборки блока питания своими руками. Она сконструирована на стабилизаторах LM317, которые регулируют напряжение в диапазоне 1,3-37В. Их работа совмещена с транзисторами КТ818. Это мощные радиодетали, которые способны пропустить большой ток. Защитную функцию схемы обеспечивают стабилизаторы LM301.

Как собрать простой блок питания

Собрать импульсный блок питания своими руками достаточно легко, если знать основные моменты. Данный блок питания будет обладать возможностью регулирования выходящего напряжения. Для реализации задумки понадобится:

  • Трансформатор понижающий;
  • Конденсатор электролический;
  • Мост диодный;
  • Потенциометр;
  • Два транзистора;
  • Сопротивления;
  • Вольтамперметр, цифровой.

В том случае, если подключение к зарядным аккумуляторам не предусмотрено схемой, диод вполне можно заменить на обыкновенную перемычку

Но если используется диод, обратите внимание, он должен выдерживать напряжение не менее 3А.

Список элементов схемы

  • R1 = 2,2 кОм 1 Вт
  • R2 = 82 Ом 1/4 Вт
  • R3 = 220 Ом 1/4 Вт
  • R4 = 4,7 кОм 1/4 Вт
  • R5, R6, R13, R20, R21 = 10 кОм 1/4 Вт
  • R7 = 0,47 Ом 5W
  • R 8, R 11 = 27 кОм 1 / 4W
  • R9, R19 = 2,2 кОм 1 / 4W
  • R10 = 270 кОм 1 / 4W
  • R 12, R 18 = 56KOhm 1 / 4W
  • R14 = 1,5 кОм 1 / 4W
  • R15 , R16 = 1 кОм 1/4 Вт
  • R17 = 33 Ом 1/4 Вт
  • R22 = 3,9 кОм 1/4 Вт
  • RV1 = переменный 100 кОм
  • P1, P2 = 10 кОм линейные
  • C1 = 3300 мкФ / 50 В
  • C2, C3 = 47 мкФ / 50 В
  • C4 = 100 нФ
  • C5 = 200 нФ
  • C6 = керамика 100 пФ
  • C7 = 10 мкФ / 50 В
  • C8 = 330 пФ керамика
  • C9 = 100 пФ керамика
  • D1, D2, D3, D4 = 1N5402,3,4 диод 2 A — RAX GI837U
  • D5, D6 = 1N4148
  • D7, D8 = 5,6 В стабилитрон
  • D9, D10 = 1N4148
  • D11 = 1N4001 диод 1 A
  • Q1 = BC548 или BC547
  • Q2 = 2N2219
  • Q3 = BC557 или BC327
  • Q4 = 2N3055 силовой транзистор
  • U1, U2, U3 = TL081
  • D12 = светодиод

Методы измерения напряжения и тока выхода в таком источнике питания зависят от ваших возможностей и пожеланий. Когда дело доходит до напряжения, следует использовать любой вольтметр и подключать его к выходным клеммам устройства. Измерение тока в данном случае проводилось с помощью светодиодной линейки и микросхемы LM3915.

Лучше питать дополнительный операционный усилитель так же, как U3. Усиливая напряжение с резистора R7, можно соблазниться регулируемым усилением (простая замена 2 или 3 резисторов с помощью переключателя), благодаря которому получим различные диапазоны измерения тока — полезные при низких токах. Также при настройке LM3915 может быть линейка или точка — по желанию.

Что такое трансформатор

Трансформаторы, используемые для выпрямителей, имеют следующие компоненты:

  1. Сердечник (магнитопровод, изготовленный из металла либо ферромагнетика).
  2. Сетевую обмоту (первичная). Запитывается от 220 Вольт.
  3. Вторичную обмотку (понижающую). Служит для подключения выпрямителя.

Теперь обо всех элементах более подробно. Сердечник может иметь любую форму, но наиболее распространены Ш-образные и U-образные. Реже встречаются тороидальные, но у них специфика иная, чаще применяются в инверторах (преобразователях напряжения, например, из 12 в 220 Вольт), нежели в обычных выпрямительных устройствах. Блок питания 12В 2А целесообразнее делать с использованием трансформатора, имеющего Ш-образный или U-образный сердечник.

Обмотки могут располагаться как друг на друге (сначала первичная, а после вторичная), на одном каркасе, так и на двух катушках. В качестве примера можно привести трансформатор с U-образным сердечником, на котором имеются две катушки. На каждой из них произведена намотка половины первичной и вторичной обмоток. При подключении трансформатора требуется соединять выводы последовательно.

Схемы инверторов

Получившееся выпрямленное напряжение поступает на преобразователь (инвертор). Его выполняют на биполярных или полевых транзисторах, а также на IGBT-элементах, сочетающих свойства полевых и биполярных. В последние годы получили распространение мощные и недорогие полевые транзисторы с изолированным затвором (MOSFET). На таких элементах удобно строить ключевые схемы инверторов. В схемах импульсных блоков питания используются различные варианты включения MOSFET, но в основном применяются двухтактные схемы из-за простоты и возможности наращивания мощности без существенных переделок.

Пуш-пульная схема

Схема пуш-пульного преобразователя.

Пуш-пульный инвертор (push – толкать, pull – тянуть) — пример двухтактного преобразователя. Транзисторные ключи работают на первичную обмотку трансформатора, состоящую из двух полуобмоток I и II. Транзисторы поочередно открываются на заданный промежуток времени. Когда открыт верхний по схеме транзистор, ток течет через полуобмотку I (красная стрелка), когда второй – через полуобмотку II (зеленая). Чтобы избежать ситуации, когда оба ключа открыты (из-за конечной скорости работы транзисторов), схема управления формирует паузу, называемую Dead time.

Управление транзисторами с учетом Dead time.

Такая схема хорошо работает при низком напряжении питания (до +12 вольт). Минусом является наличие выбросов амплитудой, равной удвоенному напряжению питания. Это влечет за собой применение транзисторов, рассчитанных на вдвое большее напряжение.

Мостовая схема

От главного недостатка предыдущей схемы свободна двухтактная мостовая.

Двухтактная мостовая схема инвертора.

Здесь одновременно открывается пара транзисторов T1 и T4, потом Т2 и Т3 (сигнал управления ключами формируется с учетом Dead time). При этом первичная обмотка подключается к источнику питания то одной стороной, то другой. Амплитуда импульсов равна полному напряжению питания, и выбросы напряжения отсутствуют. К минусам относят применение четырех транзисторов вместо двух. Помимо увеличения габаритов БП это ведет к удвоенным потерям напряжения.

Полумостовая схема

На практике часто применяют полумостовую схему инвертора – в определенной мере компромисс между предыдущими двумя схемами.

Полумостовая схема.

В этом случае одна сторона обмотки коммутируется поочередно открывающимися транзисторами Т1 и Т2, а другая подключается к средней точке емкостного делителя С1, С2. Достоинства схемы:

  • в отличие от пушпульной отсутствуют выбросы напряжения;
  • в отличие от мостовой используются только два транзистора.

На другой чаше весов – обмотка трансформатора запитана лишь от половины напряжения питания.

Однотактные схемы

В схемотехнике преобразователей применяются и однотактные схемы – прямоходовые и обратноходовые. Их принципиальное отличие от двухтактных – трансформатор (точнее, его первичная обмотка) служит одновременно накопительной индуктивностью. В обратноходовых схемах энергия накапливается в первичной обмотке во время открытого состояния транзистора, а отдается в нагрузку через вторичную обмотку во время закрытого. В прямоходовых накопление энергии и отдача потребителю происходит одновременно.

Две фазы работы обратногоходового однотактного инвертора.

Варианты БП для самостоятельного монтажа

Блок питание выбирается исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также как собирать самодельные блоки питания.

Простой БП 0-30 В

Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.

Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.

Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное, подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.

Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.

В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.

Для измерения потребляемого нагрузкой тока, задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.

Вольтметр можно использовать цифровой.

Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.

Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.

Мощный импульсный БП

Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для заряди АКБ.

Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:

  1. Внутренняя схема питания, состоящая из источника напряжения на 12 В и ток минимум 300 мА. Назначение этого источника – запитка схемы БП.

  2. Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток.

  3. Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне.

Для размещения элементом схемы изготавливают печатную плату.

Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.

На Ардуино

Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может «отдыхать», функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.

«Умный» блок питания представлен на схеме.

Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.

Печатную плату можно сделать по образцу.

Внешний вид устройства и внутреннее расположение компонентов представлено на фото.

Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.

Что нужно знать

Оптимальными являются параметры, при которых имеется возможность регулировать напряжение в пределах 0-30 В. В цепи будет установлен электронный ограничитель по силе тока. Он будет с высокой степенью эффективности осуществлять регулировку параметров в пределах от 0,002 А до 3 А максимум. Это позволяет получить комфортный и универсальный прибор с возможностью регулировки мощности.

ЛБП 0-15В/5A

Ампераж успешно ограничивается, обеспечивая рабочие параметры. За счет этого приборы-потребители, подключенные к самодельному прибору element 305d или из atx, будут в безопасности и не сгорят из-за перепадов значений.

Более подробно расположение всех составляющих демонстрирует потенциальная схема:

Схема расположения составляющих цепи

Она обладает такими рабочими параметрами:

  • Максимальный входной ток – 3 А.
  • Рабочее входное напряжение – 24 В (тип — переменный).
  • Выходной вольтаж – 0…30В.
  • Выходной ампераж – 0,002…2А.
  • Пульсация в пределах 0,01%.

К преимуществам можно отнести такие характеристики:

  • выходные параметры достаточно легко регулировать;
  • компактные габаритные параметры;
  • относительная простота изготовления;
  • несложная конструкция из подручных средств;
  • наличие нескольких степеней защиты, включая от ошибочного подключения;
  • наличие визуальной индексации.

ВИДЕО: Лабораторный блок питания из компьютерного АТХ

Как собрать лабораторный блок из китайских модулей

На торговых площадках в интернете можно приобрести готовые китайские модули, на основе которых можно построить неплохой лабораторный источник питания.

ЛБП строится по структуре линейного источника, но составляющие имеют совершенно другой принцип работы. Так, вместо обмоточного трансформатора можно применить плату WX-DC2416 36V-5, которая при питании от сети 220 вольт переменного тока на выходе выдает 36 вольт постоянного при токе до 5 А.

Плата импульсного преобразователя 220VAC/26VDC.

В качестве стабилизатора можно применить плату на базе микросхемы LM2596. В продаже имеется несколько вариантов таких плат, удобнее всего использовать модуль с готовым техническим решением по регулировке максимального тока. Отличить такой модуль можно по наличию трех (а не одного) подстроечных резисторов на плате.

Плата на базе LM2596 с регулировкой максимального тока, расположение выводов и потенциометров.

При подаче на вход 35 вольт путем регулировки на выходе можно получить 1,5..30 вольт постоянного напряжения. Производитель декларирует наибольший ток в 3 ампера, но на практике уже при токах, превышающих 1 А микросхема начинает греться. Для отдачи максимальной мощности нужен дополнительный радиатор достаточной площади. Есть сведения, что микросхема комфортно работает и при нагрузке до 4 А при условии организации принудительного обдува теплоотвода.

Для оперативной регулировки надо выпаять два крайних подстроечных резистора и заменить их потенциометрами, которые надо вывести на переднюю панель блока питания. Чтобы получился полноценный блок питания надо добавить еще прибор для измерения тока и напряжения. Его также можно приобрести через интернет. Удобнее применять измеритель в едином блоке, чем два прибора отдельно.

Цифровой блок вольтметр-амперметр.

Осталось только добавить тумблер питания, клеммник для подключения потребителя, связать модули в единую систему и поместить в корпус. По габаритам неплохо подойдет корпус от неисправного компьютерного блока питания.

Соединение китайских модулей в БП.

Некоторые пользователи жалуются, что выходное напряжение грязновато. Это не удивительно, ведь блок питания импульсный. Если это не устраивает владельца БП, можно попробовать исправить проблему установкой дополнительных конденсаторов (показаны на схеме). Емкость подбирается экспериментально, но не менее 1000 мкФ.

Для наглядности рекомендуем к просмотру серию тематических видеороликов.

Лабораторный источник питания при самостоятельном изготовлении обходится совсем недорого. Многие комплектующие могут быть извлечены из куч радиохлама, имеющегося у каждого любителя электронных самоделок. Но служить ЛБП будет долго и принесет большую пользу.

Как собрать простой блок питания

Собрать импульсный блок питания своими руками достаточно легко, если знать основные моменты. Данный блок питания будет обладать возможностью регулирования выходящего напряжения. Для реализации задумки понадобится:

  • Трансформатор понижающий;
  • Конденсатор электролический;
  • Мост диодный;
  • Потенциометр;
  • Два транзистора;
  • Сопротивления;
  • Вольтамперметр, цифровой.

В том случае, если подключение к зарядным аккумуляторам не предусмотрено схемой, диод вполне можно заменить на обыкновенную перемычку

Но если используется диод, обратите внимание, он должен выдерживать напряжение не менее 3А

Устройство импульсных источников питания

Входное напряжение выпрямляется. Процесс осуществляет диодный мост, реже одиночный диод. Затем напряжение нарезается импульсами, здесь литература бодро переходят к описанию трансформатора. Читателей наверняка мучает вопрос – как работает чоппер (устройство, формирующее импульсы). На основе микросхемы, питающейся непосредственно сетевым напряжением 230 вольт. Реже специально ставится стабилитрон (стабилизатор параллельного типа).

Микросхема формирует импульсы (20 – 200 кГц), сравнительно малой амплитуды, управляющие тиристором или иным полупроводниковым силовым ключом. Тиристор нарезает высокое напряжение импульсами, по гибкой программе, формируемой микросхемой генератора. Поскольку на входе действует высокое напряжения, нужна защита. Генератор охраняется варистором, сопротивление которого резко падает при превышении порога, замыкая вредный скачок на землю. С силового ключа пачки импульсов поступают на малогабаритный высокочастотный трансформатор. Линейные размеры сравнительно невысоки. Для компьютерного блока питания мощностью 500 Вт умещается детской ладонью.

Полученное напряжения вновь выпрямляется. Используются диоды Шоттки, спасибо низкому падению напряжения перехода металл-полупроводник. Спрямленное напряжение фильтруется, подается потребителям. Благодаря наличию множества вторичных обмоток достаточно просто получаются номиналы различной полярности и амплитуды. Рассказ неполон без упоминания цепи обратной связи

Выходные напряжения сравниваются с эталоном (например, стабилитрон), происходит подстройка режима генератора импульсов: от частоты, скважности зависит передаваемая мощность (амплитуда). Изделия считаются сравнительно неприхотливыми, могут функционировать в широком диапазоне питающих напряжений

Корпусной блок питания

Технология носит название инверторной, используется сварщиками, микроволновыми печами, индукционными варочными панелями, адаптерами сотовых телефонов, iPad. Компьютерный блок питания работает подобным образом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector