Как лучше подключить двигатель 380 на 220 звездой или треугольником

Содержание:

Общие схемы подключения двигателей с 380В на 220В через конденсатор

Чаще всего при необходимости решения такой задачи используют рабочий и пусковой конденсаторы (батареи конденсаторов). Базовые схемы подключения треугольником и звездой на 380В можно видеть на следующей иллюстрации:

Нефиксированная кнопка «Разгон» используется для активации параллельно подключенного пускового конденсатора. Ее необходимо удерживать до тех пор, пока двигатель не наберет максимальных оборотов. После этого пусковую цепь необходимо обязательно разъединить, чтобы предотвратить перегревание обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.

Расчет емкости конденсаторов ведется по следующим формулам:

Емкость пускового конденсатора при этом должна быть вдвое выше рабочей. Если не прибегать к расчету по формулам, то можно воспользоваться значением 7 мкФ/кВт.

Практическое применение показывает, что более эффективным является подключение треугольником, так как при этом распределение напряжения в обмотках будет более равномерным, да и мощность снижается меньше. Есть правда одно ограничение, которое касается компоновки клеммного блока двигателя. Если под его крышкой находится лишь три вывода на 380, то имеет место заранее предустановленная схема соединения, которую не изменишь. Если же там располагается шесть выводов, то можно выбирать, какой вариант организовать. Характерное обозначение наносится на металлическую табличку с характеристиками.

Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовую схему можно доработать с организацией цепи динамического торможения:

Здесь можно видеть включение двигателя треугольником через емкостную цепь конденсаторов С1 (пускового) и С2 (рабочего). Дополнительно организована цепь на транзисторе и элементе сопротивления, которая подключается трехпозиционным ключом. Когда он находится в положении «3», напряжение сети 220В поступает на обмотки статора и кнопкой К1 можно совершить его запуск. Для остановки двигателя ключ переводится в положение «1», после чего на обмотки подается постоянный ток и осуществляется торможение. Следует отметить, что этот переключатель имеет только два фиксированных положения «2» и «3». Для использования обычного двухпозиционного ключа в эту цепь необходимо будет добавить еще один конденсатор. Выглядит это следующим образом:

Ранее уже упоминался тот факт, что однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно сдвинуть (заставить вращаться) в ту или иную сторону. Следовательно, можно реализовать на практике схему реверсного подключения электродвигателя на 380В:

Схема является в некотором роде комбинацией двух предыдущих, только здесь использованы сдвоенный переключатель и пуск через реле Р1.

https://youtube.com/watch?v=tqwz6Uv7mlE

Рассмотренные в статье схемы являются базовыми, но в зависимости от конкретного случая их можно модифицировать как угодно, чтобы добиться включения в однофазную сеть 220В трехфазного асинхронного электродвигателя на 380В.

Конструктивные особенности

Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).

Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).

Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.

Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.

При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.

Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.

Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.

Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.

Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.

Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.

Двигатель, особенности размещения перемычек катушек, первые шаги подключения

Первое, на что нужно обратить внимание – это шильдик двигателя. На нём прописана возможность однофазного подключения, мощность агрегата и другая необходимая для работы информация

Шильдик электродвигателя – на нём указаны все параметры

Было решено начинать сборку схемы подключения с контактной группы двигателя. На ней находится 6 контактов – по паре на обмотку. Изначально, перемычки на них были установлены в ряд по одной стороне, соединяя в одной точке все 3 обмотки – в «звезду». Подобная коммутация подходит лишь для трёхфазного подключения, поэтому они были переустановлены для подключения в «треугольник», который нам необходим для напряжения 220 В. Это расположение можно увидеть на фото.

Перемычки установлены в контактной группе для подключения «треугольником»

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

  • Звезда.
  • Треугольник.

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.

Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.

Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.

Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.

При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Включение трехфазного двигателя в однофазную сеть

Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор. Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор.

Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети. Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения. Потери на ориентировочно достигают 30-50%.

Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.

Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Лучше других в этом смысле двигатели асинхронные, которые рассчитаны на напряжение 380/220 В (первое — для звезды, второе – треугольника).

Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения.

Если присутствует «А», это свидетельствует о том, что использоваться может как схема «треугольник», так и «звезда». «Б» сообщает о том, что подключены обмотки «звездой» и не могут быть соединены по – другому.

Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности (т.е. отклонение стрелки происходит в ту же сторону) должен появляться на двух оставшихся обмотках. Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечают и подсоединяют по схеме.

Как еще можно подключить электродвигатель

Помимо соединения звезда-треугольник, также есть еще несколько вариантов, которые применяются более часто:

Многие электрики советуют поставить конденсатор. Конечно, это самое простое решение, но в тоже время Вы сразу получите резкое снижение мощности электродвигателя. Для её реализации понадобится только исправный конденсатор. Нужно два контакта конденсатора подключить к нулю и третьему выходу электродвигателя. В итоге получится маломощный агрегат до 1,5 Вт. Но если Ваш электродвигатель производит большую мощность, то нужно в схему ввести еще пусковой конденсатор. Но в тоже время, если у Вас однофазное подключение, то конденсатор просто компенсирует отсутствие третьего выхода; Фото – схема подключения двигателя с конденсаторами
Если у Вас асинхронный электродвигатель, то можно легко его подключить в звезду либо треугольник по желанию с 380 на 220 В

В таких двигателях установлено три обмотки, которые соединены между собой в звезду или треугольник, для изменения напряжения нужно просто поменять выводы, которые идут на вершины соединений;
Очень важно внимательно читать инструкция к двигателю, его сертификат и паспорт. У многих импортных моделей возможна только монтажная схема соединения треугольник к нашему напряжению 220 В

Если Вы проигнорируете это правило и включите их в сеть 220 при помощи соединения звезда, то моторы просто сгорят под высокой нагрузкой. Также нельзя подключать к домашней сети двигатель, у которого мощность более трех киловатт, иначе начнутся короткие замыкания или даже сгорит автомат УЗО.

Дополняя пункт про конденсаторы, нужно отметить, что подбирать эту комплектующую необходимо исходя из минимально допустимой емкости, постепенно пробными методами увеличивая её до оптимальной, необходимой двигателю. Если электродвигатель очень долго стоит без нагрузки, то он может просто сгореть при подключении к сети. Также помните, что даже после того, как Вы выключили из сети электродвигатели, конденсаторы хранят напряжение на своих контактах.

Ни в коем случае не трогайте их, а желательно оградите специальным изолирующим слоем, который поможет избежать несчастных случаев. Также перед работой с ними нужно делать разрядку.

Подключение электродвигателя 380 на 220

2016-07-15 Советы 2 комментария

Большинство асинхронных двигателей, предназначенных для работы в трехфазной сети 380 В можно спокойно переделать для работы в домашнем хозяйстве, например для точильного станка или сверлильного, где напряжение сети обычно составляет 220 В. На практике чаще всего применяется схема подключения в однофазную сеть с помощью конденсаторов.

При этом стоит отметить, что при таком подключении мощность электродвигателя составит 50-60% от его номинальной мощности, но и этого зачастую будет вполне достаточно.

Для чего нам нужны конденсаторы? Если вспомнить теорию, обмотки в асинхронном двигателе имеют фазовый сдвиг в 120 градусов, благодаря чему создаётся вращающееся магнитное поле. Вращающееся магнитное поле, пересекая обмотки ротора, индуцирует в них электродвижущую силу, что приводит к возникновению электромагнитной силы, под действием которой ротор начинает вращаться. Но это действительно только для трехфазной сети.

При подключении в однофазную сеть трехфазного двигателя вращающий момент будет создаваться только одной обмоткой и этого усилия будет недостаточно для вращения ротора. Чтобы создать сдвиг фазы относительно питающей фазы и применяют фазосдвигающие конденсаторы.

Наиболее распространенными схемами подключения трехфазного двигателя к однофазной сети являются схема «треугольник» и схема «звезда». При подключении в «треугольник» выходная мощность электродвигателя будет больше чем у «звезды», поэтому в быту обычно применяют ее.

Для того, чтобы определить по какой схеме выполнено подключение двигателя, надо снять крышку клеммника и посмотреть каким образом установлены перемычки.

В случае подключения «треугольником» все обмотки должны быть соединены последовательно, т. е. конец одной обмотки с началом следующей.

Если в клеммник выведено только 3 вывода, значит придется разбирать двигатель и находить общую точку подключения трех концов обмоток. Это соединение надо разорвать, к каждому концу припаять отдельный провод, после чего вывести их на клеммную колодку. Таким образом мы получим уже 6 проводов, которые соединим по схеме «треугольник».

После того как определились со схемой подключения, необходимо подобрать емкость конденсаторов. Емкость рабочего конденсатора можно определить по формуле С раб = 66·Р ном, где Р ном — номинальная мощность двигателя. То есть берем на каждые 100 Вт мощности берем примерно 7 мкФ емкости рабочего конденсатора. Если конденсатора необходимой емкости нет в наличии, можно набрать из нескольких конденсаторов, подключая их в параллель. Конденсаторы можно применять любого типа, кроме электролитических. Неплохо зарекомендовали себя конденсаторы типа МБГО, МБГП. Емкость пускового конденсатора должна быть примерно в в 2-3 раза больше, чем емкость рабочего конденсатора. Рабочее напряжение конденсаторов должно быть в 1,5 раза больше напряжения сети.

Если двигатель после запуска начнет перегреваться, значит расчетная емкость конденсаторов завышена. Если емкости конденсаторов недостаточно, будет происходить сильное падение мощности двигателя. При правильном подборе емкости конденсаторов ток в обмотке, подключенной через рабочий конденсатор, будет одинаков или незначительно отличаться от тока, потребляемого двумя другими обмотками. Рекомендуют подбирать емкости, начиная с наименьшего допустимого значения, постепенно увеличивая емкость до необходимого значения.

В случае подключения маломощных двигателей, работающих первоначально без нагрузки, можно обойтись одним рабочим конденсатором.

Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов

Для подключения в однофазную сеть по этому методу подойдет любой асинхронный движок типового исполнения.

Автор Голик обращает внимание, что обороты ротора в минуту должны составлять не 3000, а 1500. Связано это с конструкцией обмоток статора

Мощность устройства ограничена электрическими характеристиками силовых диодов и тиристоров — 10 ампер с величиной обратного напряжения более 300 вольт.

Три обмотки статора необходимо подключать по схеме треугольника.

Их выводы собираются на клеммной колодке тремя последовательными перемычками.

Напряжение 220 вольт подключается через защитный автоматический выключатель параллельно одной обмотке, назовем ее «A». Две другие оказываются последовательно соединенными между собой и параллельно — с ней.

Обозначим их «B» и «C». На выводы одной из них, например, «B» подключается электронный блок. Назовем его ключом «k».

Представим, что ее контакт всегда разомкнут, а напряжение подано. Тогда по цепочкам «A» и «B+C» станут протекать токи Ia и Ib+c. Мы знаем, что сопротивление всех обмоток статора (резистивно-индуктивное) одинаково.

Поэтому в цепи «A» ток станет в два раза превышать вектор Ib+c, а по фазе они будут совпадать.

Каждый из этих токов создаст вокруг себя магнитный поток. Но, они не смогут в этой ситуации привести во вращение ротор.

Чтобы электродвигатель стал работать, необходимо сдвинуть по углу два этих магнитных потока (или токи между собой). Эту функцию в нашем случае выполняет электронный ключ.

Его конструкция собрана так, что он кратковременно замыкается, а затем размыкается, шунтируя обмотку «B».

Для этого процесса выбирается момент времени, когда синусоида напряжения достигает максимального амплитудного значения, а сила тока в обмотке «C», ввиду ее индуктивного сопротивления, минимальна.

Резкое закорачивание сопротивления «B» в цепи «B+C» создает бросок тока через замкнутый электронный контакт по виткам обмотки «C», который быстро возрастает и затем снижается под влиянием уменьшения амплитуды напряжения до нуля.

Между токами в обмотках «A» и «C» образуется временной сдвиг, обозначенный буквой φ. За счет возникновения этого угла сдвига фаз создается суммирующий магнитный поток, начинающий раскрутку ротора двигателя.

Форма тока в обмотке «C» при работе электронного ключа отличается от гармоничной синусоиды, но она не мешает создать на валу ротора крутящий момент.

При переходе полуволны синусоиды напряжения в область отрицательных значений картина повторяется, а двигатель продолжает раскручиваться дальше.

Использование конденсаторов

При использовании мотора мощностью до 1500 Вт можно устанавливать только один конденсатор – рабочий. Чтобы вычислить его мощность, воспользуйтесь формулой:

I – рабочий ток, U – напряжение, Р – мощность двигателя.

Чтобы упростить расчет, можно поступить иначе – на каждые 100 Вт мощности необходимо 7 мкФ емкости. Следовательно, для двигателя 750 Вт нужно 52-55 мкФ (нужно поэкспериментировать немного, чтобы добиться нужного смещения фазы).

В том случае, если нет в наличии конденсатора нужной емкости, нужно соединить параллельно те, которые имеются, при этом используется такая формула:

Читать также: Что можно использовать вместо канифоли при пайке

Пусковой конденсатор необходим при использовании двигателей, мощность которых свыше 1,5 кВт. Пусковой конденсатор работает только в первые секунды включения, чтобы дать «толчок» ротору. Он включается через кнопку параллельно рабочему. Другими словами, с его помощью сильнее сдвигается фаза. Только таким образом можно подключить двигатель 380 на 220 через конденсаторы.

Суть использования рабочего конденсатора – это получение третьей фазы. В качестве первых двух используются ноль и фаза, которая уже есть в сети. Проблем с подключением двигателя возникнуть не должно, самое главное – прячьте конденсаторы подальше, желательно в герметичный крепкий корпус. Если элемент выйдет из строя, он может взорваться и нанести вред окружающим. Напряжение конденсаторов должно быть не менее 400 В.

Выполнение расчёта конденсатора для электродвигателя 380 на 220

Чтобы подключить трехфазный двигатель на 380 В к однофазной сети на 220 В, следует выполнить расчёт конденсатора для электродвигателя 380 на 220 вольт, если быть более точным, пары конденсаторов — рабочего и пускового. Асинхронный электромотор подключается двумя способами: по схемам «треугольник» и «звезда».

  • Электронный компонент накопления электроэнергии
  • Установление выводов обмоток
  • Способы подключения электродвигателей

Электронный компонент накопления электроэнергии

Конденсатором называется электронный элемент, который предназначен для аккумулирования электроэнергии. Характер работы не предусматривает активных действий компонента. С учетом рабочего режима выделяют конденсаторы переменной и постоянной ёмкости.

В зависимости от вида напряжения различают полярные, где следует строго придерживаться определенной полярности, и неполярные (применяются в цепях переменного и постоянного тока). При выборе требуемой емкости следует помнить, что в цепи с параллельным соединением итоговая ёмкость складывается.

Когда двигатель достигает рабочей частоты и мощности, пусковой конденсатор выключают. Основная функция рабочего конденсатора — создание достаточного сдвига электромагнитного поля.

https://youtube.com/watch?v=W-NnJKC-RtM

Емкость рабочего конденсатора для подсоединения электромотора по схеме подключения обмоток «звезда» рассчитывают по формуле:

C р =2800 * I н /U с (мкф), где:

  • I н — номинальный ток электромотора, измеряемый в Амперах (соответствует паспортным данным электродвигателя);
  • U с — напряжение сети. Единица измерения — Вольт.

Емкость пускового конденсатора должна превышать емкость рабочего в 2,5−3 раза. Рассчитывается по формуле: C п = (2,5…3) * C р; (мкф).

Установление выводов обмоток

Первым делом необходимо разделить выводы обмоток попарно. У каждой пары должны быть концы, соответствующие обмотке. Для этого потребуется тестер или индикатор напряжения. При использовании тестера устанавливают флажок переключателя на измерение сопротивления (обозначается греческой буквой Ω «омега»). Если используется индикатор напряжения, перед началом работы нужно дотронуться к токоведущим частям на несколько секунд, чтобы зарядить и протестировать прибор.

Если после этого значения тестера или индикатора остались неизменными, этот конец оставляют, а вторым измерительным стержнем касаются другого вывода остальных четырех проводов, перебирая до того момента, пока показатели измерительных приборов не изменятся. Отыскав таким способом второй вывод обмотки, его принимают за конец первой обмотки и маркируют «U2». Аналогичным способом поступают с другими четырьмя проводами.

Способы подключения электродвигателей

В быту нередко возникает необходимость подключить электромотор 380 на 220 вольт. Несмотря на то что коэффициент полезного действия существенно снижается (более чем 50%), такое преобразование может быть оправданным. Фактически после модернизации двигатель начинает выполнять работу двухфазного.

Отечественные производители электромоторов нередко собирают схему «звезда» по умолчанию, тогда как «треугольник» нужно будет ещё выполнить, подсоединив три фазы и собрав звезду. Сильной стороной схемы подключения двигателя 380 на 220 вольта «треугольник» трёхфазовой электроцепи считается максимальная мощность, вырабатываемая двигателем.

Для соединения обмоток двигателя «треугольником» нужно:

  • подсоединить начало второй обмотки с концом первой;
  • начало третьей обмотки с концом второй;
  • начало первой обмотки с концом третьей обмотки.

Если двигатель подключён по схеме «треугольник», то он способен выдавать стопроцентную паспортную мощность, но во время запуска сила тока настолько велика, что возникает риск нарушения изоляции проводов. По этой причине в мощных электродвигателях используют смешанную схему подсоединения «звезда-треугольник». Двигатель запускается на малых пусковых токах, а при вхождении его в рабочий режим выполняется переход на схему «треугольник».

Схема «треугольник» подойдет электродвигателям с частотой вращения не более 1,5 тыс. оборотов в минуту. В этом типе соединения применяют конденсаторы. Смысл подключения эл. двигателя 380 на 220 через рабочий конденсатор — это появление третьей фазы.

Продвигаемся к кнопочному посту

На кнопочном посту, в моём случае, две кнопки – «СТОП» (её контакты постоянно замкнуты) и «ПУСК» (контакт постоянно разомкнут, и замыкается только в момент нажатия). Первое, что необходимо сделать – это соединить перемычкой фазную клемму рабочего пускателя и контакт кнопки «СТОП», подав на неё питание.

Присоединяем один конец перемычки к фазной клемме («L1») и протягиваем контактВторой конец идёт на клемму кнопки «СТОП»

Также следует отметить, что если кнопочный пост уже был ранее где-либо установлен, то перемычка  между контактами «ПУСК» и «СТОП» может отсутствовать. В этом случае её нужно установить. Сделать это очень просто – из фото ниже чётко видно, как выполнить подобную работу.

Перемычка между пусковой и стоповой кнопкой необходима

Продолжаем подключение кнопочного поста

Далее необходимо собрать схему таким образом, чтобы пусковая кнопка взаимодействовала с катушками обоих пускателей. Для этого монтируется перемычка между ней и одним из постоянно разомкнутых контактов катушки рабочего магнитного пускателя. В нашем случае, я выбрал зелёный провод. Один его конец фиксируем на контакте кнопки «ПУСК», к которому подходит перемычка от стоповой.

Соединение на пусковой кнопке — работа с постом практически завершена

Второй конец соединяем с катушкой рабочего пускателя и тоже сразу затягиваем – здесь больше соединений не будет.

Коммутация с постоянно разомкнутым контактом катушки рабочего пускателя

Осталось завершить подключение кнопочного поста. Монтируем перемычку со свободного контакта пусковой кнопки на питание катушки дополнительного пускателя. Таким образом, получится, что при нажатии на кнопку «ПУСК» питание будет подаваться на конденсатор 50 мкФ, но только в то время, пока она удерживается. Если кнопку отпустить (двигатель запущен), цепь разрывается, подача питания на катушку прекращается, и контакты дополнительного пускателя размыкаются.

Присоединяем один конец перемычки к свободному контакту кнопки «ПУСК»Второй конец этого провода коммутируется с клеммой катушки дополнительного пускателя

Какую схему выбрать и какая лучше?

Итак, как соединить обмотки звездой и треугольником мы разобрались, но здесь как раз и начинается «все самые интересные вопросы», причем эти вопросы у людей возникают чаще всего либо при подключении трёхфазного двигателя к однофазной сети, либо при подключении двигателя к частотному преобразователю с однофазным входом и линейными 220В на выходе и в других ситуациях.

Возможность изменения схемы соединения обмоток нужна для того, чтобы один и тот же двигатель мог эксплуатироваться в электросетях с различным напряжением.

Какую схему лучше выбрать? Вопрос не корректный, нужно соединять обмотки в ту схему, номинальное напряжение которой соответствует напряжению в электросети. Эта информация указана на шильдике электродвигателя.

Если на шильдике вашего двигателя указано как на фото выше «Δ/Y 220/380» — это значит что если линейное напряжение в питающей сети 220В – нужно соединять обмотки треугольником, если 380В – звездой. Если вы будете его подключать к однофазной сети 220В с конденсаторами – обмотки также соединяются треугольником.

Если на шильдике указано только одно напряжение и значок схемы (см. рисунок ниже), то возможности изменить схему соединения нет, и в брно, скорее всего, выведено будет 3 провода.

Встречаются и двигатели, которые в сети 380В работают, соединенными по схеме треугольника, схема звезды в этом случае рассчитана на работу в сети 660В, что вы можете наблюдать на следующей фотографии.

Но зачастую такие двигатели используются для пуска с переключением со звезды на треугольник, это делают для понижения пусковых токов.

В этом случае напряжение 380В подаётся сначала на обмотки соединенные по схеме звезды, так как номинальное напряжение для этой схемы 660В двигатель в момент пуска питается от пониженного напряжения и к каждой из обмоток прикладывается всего по 220В.

Когда обороты двигателя возрастают, происходит переключение на треугольник. И уже к каждой обмотке прикладываются их номинальные 380В.

Схема подключения электродвигателя с переходом со звезды на треугольник при пуске

Что будет если перепутать звезду и треугольник?

Чтобы ответить на этот вопрос вспомним формулы мощности трёхфазной нагрузки:

Для упрощения представим, что у нас есть сеть с каким-то определенным напряжением, пусть это будет 220/380 вольт, а также есть 3 лампы накаливания с номинальным напряжением 220В. И еще раз посмотрим на рисунок с распределением напряжений и токов в звезде и треугольнике.

Так как линейное напряжение у нас 380В, а в «звезде» фазное в 1.73 раза ниже линейного, то делаем вывод, что для работы в номинальном режиме нужно подключить эти лампочки звездой, тогда к каждой из них будет приложено 220В.

Теперь соединим их в треугольник, и что получится? Первое что бросается в глаза – к каждой лампе приложено уже 380В вместо 220В номинальных.

Несложно догадаться, что в этом случае наши лампочки просто сгорят, то же самое произойдет и с обмоткой двигателя.

Что при этом происходит с мощностью?

Если питающее напряжение и нагрузка неизменны, то при переключении со звезды на треугольник мощность, выделяемая на этой самой нагрузке, возрастёт в 3 раза. Это происходит потому, что напряжение на каждой лампе увеличилось в 1.73 раза, за ним настолько же вырос и ток.

Формулы для вычисления мощности в обоих случаях одинаковые, но цифры в них различаются, давайте проведем 1 расчет для примера.

Допустим, ток нагрузки в схеме звезды у нас был 1А, тогда полная мощность в звезде равна:

При этом мощность одной лампы в этом случае равна 220 ВА.

В треугольнике к каждой лампе приложено напряжение в 1.73 раза выше – 380В, соответственно и ток через лампу (фазный ток)

возрастет на столько же. При этом не забывайте, чтолинейный ток в звезде и так будет в 1.73 раза больше, чем фазный. Найдем полную мощность по трём фазам:

S=√3*Uл*Iл=1.73*380В*(1.73А*1.73) = 1.73*380В*3А=1972 ВА

А на одной лампе выделится мощность равная:

Но это не значит, что при соединении по схеме треугольника двигатель будет выдавать в 3 раза большую мощность, при питании от номинального для этой схемы напряжения двигатель будет выдавать свою номинальную мощность.

Источник

Особенности подключения однофазного электродвигателя 220 В.

Для приведения асинхронного однофазного электродвигателя используется пусковое сопротивление. Такой метод задействован в устройствах с расщеплённой фазой. В электрической цепи мотора присутствуют ротор и статор. Обмотка второго смещена относительно основной. При этом рабочий элемент обладает меньшим сопротивлением, чем вспомогательный. Омический сдвиг фаз обеспечивается благодаря намотке бифилярным способом. Подключение без резистора невозможно.

Особенностью однофазного двигателя является соединение вспомогательной обмотки с конденсатором. Работа начинается только после возникновения пускового момента. Конденсатор необходим для получения максимального значения. Благодаря ему и возникает пусковой момент, который приводит в работу все механизмы.

Подключение трёхфазного двигателя на 380В

Схема подключения трёхфазного электродвигателя к сети 380 вольт ещё проще. В наличии имеем три вывода обмотки, расположенных в распредкоробке корпуса, и также три фазы питающей электросети. Для двигателя, имеющего обозначение 220/380, выводы его обмоток соединяются «звездой», а подключение нуля не требуется. Сменить направление вращения вала двигателя 380В можно, просто поменяв своими местами две обмотки, какие конкретно – значения не имеет. Как видим, подключить трёхфазный мотор можно и к сети в 220, и в 380 вольт. Сделать это не представит особых трудностей для человека, имеющие начальные навыки обращения с электроприборами.

Реверсирование двигателя

Для того чтобы заставить двигатель вращаться в другую сторону, достаточно «перевернуть» фазу, поступающую на точку соединения обмоток В и С (соединение «Треугольник») или на обмотку В (схема «Звезда»). Схема же, позволяющая изменять направление вращения ротора простым щелчком переключателя SB2, будет выглядеть следующим образом.

Реверсирование трехфазного двигателя на 380 В, работающего в однофазной сети

Здесь следует заметить, что практически любой трехфазный двигатель — реверсный, но выбирать направление вращения мотора нужно перед его пуском. Реверсировать электродвигатель во время его работы нельзя! Сначала нужно обесточить электродвигатель, дождаться его полной остановки, выбрать нужное направление вращение тумблером SВ1 и лишь затем подать на схему напряжение и кратковременно нажать на кнопку В1.

Заключение

При включении трехфазного двигателя в однофазную сеть существенно изменяются характеристики электрической машины. Из-за значительных недостатков такой метод в промышленном электроприводе не применяется, и допускается только как исключительная мера. Например, при необходимости экстренного восстановления работоспособности оборудования. Такое подключение допустимо только для маломощных электродвигателей.

Работа трехфазных устройств в сети 220 В широко применяется в приводе домашних станков и оборудования. Применение ПЧ частоты имеет неоспоримые преимущества перед пуском через емкостные элементы. Частотный преобразователь снижает нагрев и шум двигателей, повышает коэффициент мощности, позволяет регулировать частоту вращения вала. Кроме того, устройство обеспечивает защиту оборудования, позволяет осуществлять реверс двигателя, избавляет от необходимости сборки сложных схем управления.

Для исключения ошибок при выборе ПЧ лучше обратиться в службу технической поддержки производителя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector