Просто о сложном: сравнительная таблица теплопроводности строительных материалов

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Материал Коэфф. тепл. Вт/(м2*К)
Алебастровые плиты 0,470
Алюминий 230,0
Асбест (шифер) 0,350
Асбест волокнистый 0,150
Асбестоцемент 1,760
Асбоцементные плиты 0,350
Асфальт 0,720
Асфальт в полах 0,800
Бакелит 0,230
Бетон на каменном щебне 1,300
Бетон на песке 0,700
Бетон пористый 1,400
Бетон сплошной 1,750
Бетон термоизоляционный 0,180
Битум 0,470
Бумага 0,140
Вата минеральная легкая 0,045
Вата минеральная тяжелая 0,055
Вата хлопковая 0,055
Вермикулитовые листы 0,100
Войлок шерстяной 0,045
Гипс строительный 0,350
Глинозем 2,330
Гравий (наполнитель) 0,930
Гранит, базальт 3,500
Грунт 10% воды 1,750
Грунт 20% воды 2,100
Грунт песчаный 1,160
Грунт сухой 0,400
Грунт утрамбованный 1,050
Гудрон 0,300
Древесина — доски 0,150
Древесина — фанера 0,150
Древесина твердых пород 0,200
Древесно-стружечная плита ДСП 0,200
Дюралюминий 160,0
Железобетон 1,700
Зола древесная 0,150
Известняк 1,700
Известь-песок раствор 0,870
Ипорка (вспененная смола) 0,038
Камень 1,400
Картон строительный многослойный 0,130
Каучук вспененный 0,030
Каучук натуральный 0,042
Каучук фторированный 0,055
Керамзитобетон 0,200
Кирпич кремнеземный 0,150
Кирпич пустотелый 0,440
Кирпич силикатный 0,810
Кирпич сплошной 0,670
Кирпич шлаковый 0,580
Кремнезистые плиты 0,070
Латунь 110,0
Лед 0°С 2,210
Лед -20°С 2,440
Липа, береза, клен, дуб (15% влажности) 0,150
Медь 380,0
Мипора 0,085
Опилки — засыпка 0,095
Опилки древесные сухие 0,065
ПВХ 0,190
Пенобетон 0,300
Пенопласт ПС-1 0,037
Пенопласт ПС-4 0,040
Пенопласт ПХВ-1 0,050
Пенопласт резопен ФРП 0,045
Пенополистирол ПС-Б 0,040
Пенополистирол ПС-БС 0,040
Пенополиуретановые листы 0,035
Пенополиуретановые панели 0,025
Пеностекло легкое 0,060
Пеностекло тяжелое 0,080
Пергамин 0,170
Перлит 0,050
Перлито-цементные плиты 0,080
Песок 0% влажности 0,330
Песок 10% влажности 0,970
Песок 20% влажности 1,330
Песчаник обожженный 1,500
Плитка облицовочная 1,050
Плитка термоизоляционная ПМТБ-2 0,036
Полистирол 0,082
Поролон 0,040
Портландцемент раствор 0,470
Пробковая плита 0,043
Пробковые листы легкие 0,035
Пробковые листы тяжелые 0,050
Резина 0,150
Рубероид 0,170
Сланец 2,100
Снег 1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) 0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности) 0,230
Сталь 52,0
Стекло 1,150
Стекловата 0,050
Стекловолокно 0,036
Стеклотекстолит 0,300
Стружки — набивка 0,120
Тефлон 0,250
Толь бумажный 0,230
Цементные плиты 1,920
Цемент-песок раствор 1,200
Чугун 56,0
Шлак гранулированный 0,150
Шлак котельный 0,290
Шлакобетон 0,600
Штукатурка сухая 0,210
Штукатурка цементная 0,900
Эбонит 0,160

Теплотехнический расчет.

Приступаем непосредственно к теплотехническому расчету, а именно — нам необходимо подобрать толщину 2-го слоя (утеплителя) исходя из условий места строительства.В первую очередь — определяем норму тепловой защиты из условий соблюдения санитарных норм.Согласно формулы 3 из СНиП 23-02-2003 «Тепловая защита зданий» рассчитывается нормативное (или другими словами максимально допустимое) сопротивление теплопередачи, формула выгладит так:

где:n = 1 — коэффициент, принятый по таблице 6, из СНиП 23-02-2003 «Тепловая защита зданий» для наружной стены (впрочем, в последнем актуализированном СП данный коэффициент упразднили!);

tint = 20°С — оптимальная температура в помещении, из исходных данных;

text = -30°С — температура наиболее холодной пятидневки, значение из исходных данных;

Δtn = 4°С — данный показатель принимается по таблице 5, из СНиП 23-02-2003 «Тепловая защита зданий» он нормирует температурный перепад между температурой воздуха внутри помещения и температурой внутренней поверхности ограждающей конструкции (стены);

αint = 8,7 Вт/(м2×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 из СНиП 23-02-2003 «Тепловая защита зданий» для наружных стен.

Выполняем расчет:

получили сопротивление теплопередачи из санитарных норм Rreq = 1.437 м2*℃/Вт;

Во вторую очередь, определяем сопротивление теплопередачи из условий энергосбережения.

Определяем градусо-сутки отопительного периода, для этого воспользуемся формулой, согласно пункта 5.3 в СНиП 23-02-2003″Тепловая защита зданий»:

Dd = (tint — tht)zht = (20 + 4,0)*214 = 5136°С×сут

Примечание: градусо-сутки ещё имеют сокращенное обозначение — ГСОП.

Далее, согласно СНиП 23-02-2003 «Тепловая защита зданий» в зависимости от градусо-суток района строительства, рассчитываем нормативное значение приведенного сопротивления теплопередаче по формуле:

Rreq= a*Dd + b = 0,00035 × 5136 + 1,4 = 3,1976м2×°С/Вт,

где: Dd — градусо-сутки отопительного периода в г. Муром,

a и b — коэффициенты, принимаемые по таблице 4, столбец 3, СНиП 23-02-2003 «Тепловая защита зданий» для стен жилого здания.таким образом, мы получили второе значение сопротивления теплопередачи исходя из энергоэффективности Rreq = 3,198 м2*℃/Вт;

Для дальнейшего расчета стены, мы принимаем наибольшее значение из двух рассчитанных нами показателей Rreq (1,437 и 3,198), и обозначим его как Rтреб = 3,198 м2*℃/Вт;

Определение толщины утеплителя

Для каждого слоя нашей многослойной стены необходимо рассчитать термическое сопротивление по формуле:

где:δi- толщина слоя, мм;λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

Рассчитываем термическое сопротивление для каждого слоя1 слой (газобетонные блоки): R1 = 0,4/0,29 = 0,116 м2×°С/Вт.3 слой (облицовочный силикатный кирпич): R3 = 0,12/0,87 = 0,104 м2×°С/Вт.4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м2×°С/Вт.

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала:

где:

Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;

Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности,

αext принимается по таблице 14 для наружных стен;

ΣRi = 0,116 + 0,104 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м2·°С/Вт

Толщина утеплителя равна:

где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм:

где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м2·°С/Вт.

Из полученного результата можно сделать вывод, что

R0 = 3,343м2×°С/Вт > Rтр0 = 3,198м2×°С/Вт → следовательно, толщина утеплителя подобрана правильно.

Вот мы и выполнили теплотехнический расчет стены и нам известны толщины всех слоёв, входящих в её состав. Для того, чтобы долго не разбираться с нормативной документацией и самому считать на калькуляторе все эти сложные формулы, можно воспользоваться калькулятором «Теплотехнический расчет стены», где Вам достаточно просто выбрать исходные данные, а сам расчет произведется автоматически.

строительство дома

строительные технологии

  • Добавить комментарий
  • 1335 просмотров

Сравнение теплопроводности газоблока с другими материалами

Коэффициент теплопроводности газобетонных блоков, как и любого другого материала, характеризует его возможность проводить тепло. Численно он выражается плотностью теплового потока при определённом температурном градиенте. Способность удерживать тепло зависит от влияния таких факторов, как:

  1. степень паропроницаемости;
  2. плотность материала;
  3. способность усваивать тепло;
  4. коэффициент водопоглощения.

Последнее особенно хорошо видно в представленной ниже таблице:

Марка газобетона по плотности Теплопроводность газоблока в сухом состоянии (Вт/м*С) Коэффициент теплопроводности газобетона при влажности до 6% (ВТ/м*С) Теплоемкость газобетона (Вт/м²*С) за 24 часа Паропроницаемость (мг/м ч Па)
d400 0,09 0,14 3,12 0,23
d500 0,11 0,16 3,12 0,20
d600 0,12 0,18 3,91 0,17
D700 0,14 0,19 3,91 0,16

Как видите, чем более плотная у бетонного камня структура, тем меньше он пропускает пара и больше тепла. Поэтому, выбирая материал для строительства дома, не стоит стремиться покупать блоки с запасом прочности без необходимости.

Чем обусловлена теплопроводность

Теплопроводность газобетонного блока во многом обусловлена структурой материала, который более чем на 80% состоит из заполненных воздухом пор. Воздух является лучшим утеплителем, благодаря его присутствию меняется характеристика бетонного камня. Влажность воздуха тоже оказывает влияние на показатели теплопроводности – они будут тем ниже, чем суше климат.

Очень важно предварительно сделать теплотехнический расчет стены из газобетона – чтобы в итоге проживание в доме не оказалось некомфортным. При этом обязательно учитывают параметры применяемых для кладки блоков, округляя итоги в большую сторону до ближайшего показателя толщины.
Теплопроводность готовой стены может отличаться от теплопроводности газобетона d400, если, к примеру, блоки смонтировали не на клею, и на растворе

Затвердевшая пескоцементная стяжка имеет коэффициент теплопроводности 0,76 Вт/м*С – и это при расчётном коэффициенте газобетона этой марки 0,12 Вт/м*С!
Разница очевидна, и не надо быть великим специалистом, чтобы понять, что тепло будет уходить если не через блоки, то через их стыки. Вывод напрашивается сам: чем тоньше слой, тем лучше. А это возможно только при использовании тонкослойных клеёв.

Это же касается и армирующего пояса из тяжёлого бетона. Чтобы он не оказался одним большим мостом холода, монтировать его лучше по несъёмной опалубке. Её роль исполняют газобетонные U-блоки, внутрь которых укладывается арматура и производится уже заливка обычного бетона.

Коэффициент теплопроводности газобетона: всё познаётся в сравнении

Низкая теплопроводность газобетонных блоков даёт возможность получить экономию не только за счёт уменьшенной толщины стен и ширины фундамента, но и снизить расходы на эксплуатацию дома. Ведь для поддержания комфортной температуры в помещениях будет тратиться гораздо меньше электричества или газа.

Как этого добиться, мы расскажем чуть позже, а пока предлагаем оценить теплопроводность газоблока в сравнении с другими материалами:

Характеристика Газобетон Пенобетон Керамзитобетон Полистиролбетон Пустотелый кирпич Керамоблок Древесина
Плотность кг/м³ 300-600 400-700 850-1800 350-550 1400-1700 400-1000 500
Теплопроводность Вт/м*С 0,08-0,14 0,14-0,22 0,38-0,08 0,1-0,14 0,5 0,18-0,28 0,14

Как видите, теплопроводность газобетона в сравнении с группой популярных теплоэффективных материалов стен соответствует показателю древесины. Из кладочных материалов конкурировать с ним могут только пенобетон и полистиролбетон.

Приложения

В электронике

Силовые полупроводниковые элементы , как правило , установлены на радиаторах (или охладители) предназначены для содействия эвакуации энергии , произведенной на уровне анода — катодные переходов для диодов , тиристоров , симисторов и GTOs или коллектор-эмиттер для биполярных транзисторов и IGBT — транзисторов , или сток-исток для полевых МОП-транзисторов . В этом случае тепловое сопротивление между переходом и окружающим воздухом складывается из трех тепловых сопротивлений:

Тепловое сопротивление распределительной коробки

Он указан в технических характеристиках производителя. Вот несколько порядков величины термического сопротивления в зависимости от типа обычных корпусов:

  • небольшие цилиндрические коробки из пластика или металла (ТО-39 / ТО-5, ТО-92 , ТО-18): от 20 до 175  К / Вт  ;
  • плоские промежуточные коробки из пластика ( ТО-220 , ТО-126 / СОТ-32): от 0,6 до 6  К / Вт  ;
  • Ящики для компонентов средней мощности, пластиковые или металлические (ISOTOP, ТО-247, ТОП-3, ТО-3): от 0,2 до 2  К / Вт  ;
  • модульные шкафы силовых компонентов: от 0,01 до 0,5  К / Вт .

Передача тепла между переходом и корпусом происходит в основном за счет теплопроводности .

Тепловое сопротивление корпуса-радиатора

Это зависит от поверхности контакта между элементом и радиатором, а также от наличия или отсутствия электрического изолятора. Передача тепла между корпусом и радиатором происходит в основном за счет теплопроводности. Например для коробки ТО-3: без изоляции, сухой: 0,25  К / Вт  ; без изоляции, с силиконовой смазкой  : 0,15  К / Вт  ; с изолирующей слюдой 50  мкм и силиконовой смазкой: 0,35  K / Вт .

Тепловое сопротивление теплоотвод-окружающий

Передача тепла между радиатором и окружающим воздухом происходит в основном за счет конвекции  : окружающий воздух облизывает радиатор; нагретый воздух при контакте поднимается вверх, его заменяет более холодный воздух и так далее. Тепловое сопротивление зависит от поверхности радиатора, его типа (плоская, ребристая и  т. Д. ), Ориентации (вертикальные части рассеивают калории лучше, чем горизонтальные), его цвета (черный излучает больше, чем блестящий). Его можно уменьшить путем принудительной циркуляции воздуха (как в персональных компьютерах) или путем циркуляции воды в трубах, предназначенных для этой цели. Тепловое сопротивление указано производителем.

В здании

В случае теплопередачи через стену значения конвекции не учитывают подвод тепла за счет излучения. В официальных текстах приведены значения теплового сопротивления теплообмена внутренней и внешней поверхности ( и ), которые учитывают явления конвекции и излучения.
рпротивv{\ displaystyle R_ {cv}}рsя{\ displaystyle R_ {si}}рsе{\ displaystyle R_ {se}}

Термическое сопротивление материалов иногда используется в тепловых нормах, например, RT 2005 во Франции. Однако от этого количества постепенно отказываются в пользу коэффициента теплопередачи U , который также учитывает использование продукта.

Как применяются показатели в строительстве

Для каждого материала, используемого в строительстве, важно определить степень проводимости тепла. Теплоизоляционные свойства влияют на скорость промерзания стен, насколько материал подвержен воздействию холода

Показатель сопротивления при теплопередаче для любого современного материала уже вписан в справочники.

Современные технологии предполагают использование нескольких слоев для стен, дверей, поэтому показатели тепловой проводимости в них могут объединяться. Для показа общей степени проводимости принята величина «приведенное сопротивление теплопередаче».
Таблица с данными для стеклопакетов

Рассчитать ее можно точно так же, как и предыдущие данные. Но учитывать следует несколько показателей теплопроводности. Второй вариант произведения расчетов теплоотдачи – использование однородного аналога многослойной стенки. Он должен пропускать такое же количество тепла за равный промежуток времени. Разница в температурах для внутренней части помещения и внешней должна быть одинаковой.

Расчет приведенного сопротивления производится не на квадратный метр, а на целую комнату или весь дом. Показатель помогает обобщить данные о проводимости тепла всего жилища, а точнее материалов, из которых оно изготовлено. Сопротивление для пола также необходимо учитывать.

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающихконструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Источники

  • https://utepdom.ru/tolschina_uteplitelya_sten.html
  • https://www.stroiysam.ru/teplotekhnicheskiy_raschet_steny
  • https://akak7.ru/koefficient-teploprovodnosti-stroitelnyx-materialov-chto-eto-takoe-tablica-znachenij.html
  • https://gidrotgv.ru/spravka-po-koefficientu-teploprovodnosti-spravochnyj-dannye-po-koefficientu-teploprovodnosti-materialov/
  • https://santehmen.ru/steny/kak-rasschitat-teploprovodnost-steny.html
  • https://termoizol.com/polnaya-tablitsa-teploprovodnosti-razlitchnh-stroitelynh-materialov.html
  • https://svoydom.info/%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D1%8C-%D0%BC%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%B0%D0%BB%D0%BE%D0%B2-%D1%82%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D0%B0/
  • https://stroychik.ru/strojmaterialy-i-tehnologii/teploprovodnost-stroitelnyh-materialov

Толщина утеплителя для стен

Однослойные стены, выполненные только из обычного керамического или силикатного кирпича, не соответствуют современным нормативным параметрам по теплосбережению.

Для обеспечения требуемых теплозащитных характеристик наружных стен необходимо использовать эффективный утеплитель, установленный с наружной стороны или в толще конструкции стен.

Применение утеплителя, в многослойных конструкциях наружных стен, позволяет обеспечить требуемую теплозащиту стен во всех регионах России. За счет применения утеплителя потери тепла снижаются приблизительно в 2 раза, уменьшается расход строительных материалов, снижается масса стеновых конструкций, а в помещении создаются требуемые санитарно-гигиенические условия, благоприятные и комфортные для проживания.

Расчет теплоизоляции стен

Способность ограждений оказывать сопротивление потоку тепла, проходящему из помещения наружу, характеризуется сопротивлением теплопередачи R.

Требуемая толщина утеплителя наружной стены вычисляется по формуле:

  • αут – толщина утеплителя, м
  • R тр – нормируемое сопротивление теплопередаче наружной стены, м 2 · °С/Вт; (см. таблица 2)
  • δ – толщина несущей части стены, м
  • λ – коэффициент теплопроводности материала несущей части стены, Вт/(м · °С) (см. таблица 1)
  • λут– коэффициент теплопроводности утеплителя, Вт/(м · °С) (см. таблица 1)
  • r – коэффициент теплотехнической однородности (для штукатурного фасада r=0,9; для слоистой кладки r=0,8)

Для многослойных конструкций в формуле (1) δ/λ следует заменить на сумму

δi – толщина отдельного слоя многослойной стены;

λi – коэффициент теплопроводности материала отдельного слоя многослойной стены.

При выполнении теплотехнического расчета системы утепления с воздушным зазором термическое сопротивление наружного облицовочного слоя и воздушного зазора не учитываются.

Таблица 1

Материал Плотность, кг/м 3 Коэффициент теплопроводности в сухом состоянии λ, Вт/(м· о С) Расчетные коэффициенты теплопроводности во влажном состоянии*
λА, Вт/(м· о С) λБ, Вт/(м· о С)
Бетоны
Железобетон 2500 1,69 1,92 2,04
Газобетон 300 0,07 0,08 0,09
400 0,10 0,11 0,12
500 0,12 0,14 0,15
600 0,14 0,17 0,18
700 0,17 0,20 0,21
Кладка из кирпича
Глиняного обыкновенного на цементно-песчаном растворе 1800 0,56 0,70 0,81
Силикатного на цементно-песчаном растворе 1600 0,70 0,76 0,87
Керамического пустотного плотностью 1400 кг/м 3 (брутто) на цементно-песчаном растворе 1600 0,47 0,58 0,64
Керамического пустотного плотностью 1000 кг/м 3 (брутто) на цементно-песчаном растворе 1200 0,35 0,47 0,52
Силикатного одиннадцати-пустотного на цементно-песчаном растворе 1500 0,64 0,70 0,81
Силикатного четырнадцати-пустотного на цементно-песчаном растворе 1400 0,52 0,64 0,76
Дерево
Сосна и ель поперек волокон 500 0,09 0,14 0,18
Сосна и ель вдоль волокон 500 0,18 0,29 0,35
Дуб поперек волокон 700 0,10 0,18 0,23
Дуб вдоль волокон 700 0,23 0,35 0,41
Утеплитель
Каменная вата 130-145 0,038 0,040 0,042
Пенополистирол 15-25 0,039 0,041 0,042
Экструдированный пенополистирол 25-35 0,030 0,031 0,032

А или λБ принимается к расчету в зависимости от города строительства (см. таблица 2).

Сопротивление композитной стены

Параллельное тепловое сопротивление

Как и в случае с электрическими цепями, полное тепловое сопротивление для установившегося режима можно рассчитать следующим образом.

Параллельное тепловое сопротивление в композитных стенах

Общее термическое сопротивление

1Rtot=1RB+1RC{\displaystyle {{1 \over R_{\rm {tot}}}={1 \over R_{B}}+{1 \over R_{C}}}}          (1)

Упрощая уравнение, получаем

Rtot=RBRCRB+RC{\displaystyle {R_{\rm {tot}}={R_{B}R_{C} \over R_{B}+R_{C}}}}          (2)

Используя термины для термического сопротивления проводимости, мы получаем

Rt,cond=L(kb+kc)A{\displaystyle {R_{t,{\rm {cond}}}={L \over (k_{b}+k_{c})A}}}          (3)

Сопротивление последовательно и параллельно

Часто целесообразно предполагать одномерные условия, хотя тепловой поток многомерен. Теперь для этого случая можно использовать две разные схемы. Для случая (а) (показанного на рисунке) мы предполагаем изотермические поверхности для нормальных к направлению x, тогда как для случая (b) мы предполагаем адиабатические поверхности, параллельные направлению x. Мы можем получить разные результаты для общего сопротивления, и соответствующие фактические значения теплопередачи заключены в скобки . Когда многомерные эффекты становятся более значительными, эти различия увеличиваются с увеличением .ртот{\ displaystyle {R_ {tot}}}q{\ displaystyle {q}}|kж-kграмм|{\ displaystyle {| k_ {f} -k_ {g} |}}

Эквивалентные тепловые схемы для последовательно-параллельной композитной стены

Радиальные системы

Сферические и цилиндрические системы можно рассматривать как одномерные из-за градиентов температуры в радиальном направлении. Стандартный метод может использоваться для анализа радиальных систем в условиях стационарного состояния, начиная с соответствующей формы уравнения теплопроводности, или альтернативный метод, начиная с соответствующей формы закона Фурье . Для полого цилиндра в установившемся режиме без тепловыделения соответствующая форма уравнения теплопроводности имеет вид

1rddr(krdTdr)={\displaystyle {{1 \over r}{d \over dr}\left(kr{dT \over dr}\right)=0}}          (4)

Где рассматривается как переменная. При рассмотрении соответствующей формы закона Фурье физическое значение рассмотрения как переменной становится очевидным, когда скорость, с которой энергия проходит по цилиндрической поверхности, представлена ​​как
k{\ displaystyle {k}}k{\ displaystyle {k}}

qr=−kAdTdr=−k(2πrL)dTdr{\displaystyle {q_{r}=-kA{dT \over dr}=-k(2\pi rL){dT \over dr}}}          (5)

Где область, перпендикулярная направлению теплопередачи. Уравнение 1 подразумевает, что величина не зависит от радиуса , из уравнения 5 следует, что скорость теплопередачи является постоянной в радиальном направлении.
Азнак равно2πрL{\ displaystyle {A = 2 \ pi rL}}kр(dТdр){\ displaystyle {kr (dT / dr)}}р{\ displaystyle {r}}qр{\ displaystyle {q_ {r}}}

Полый цилиндр с условиями конвективной поверхности по теплопроводности

Чтобы определить распределение температуры в цилиндре, уравнение 4 может быть решено с применением соответствующих граничных условий . В предположении, что постоянный
k{\ displaystyle {k}}

T(r)=C1ln⁡r+C2{\displaystyle {T(r)=C_{1}\ln r+C_{2}}}          (6)

Используя следующие граничные условия, можно вычислить
константы иC1{\ displaystyle {C_ {1}}}C2{\ displaystyle {C_ {2}}}

T(r1)=Ts,1{\displaystyle {T(r_{1})=T_{s,1}}}          and          T(r2)=Ts,2{\displaystyle {T(r_{2})=T_{s,2}}}

Общее решение дает нам

Ts,1=C1ln⁡r1+C2{\displaystyle {T_{s,1}=C_{1}\ln r_{1}+C_{2}}}          and          Ts,2=C1ln⁡r2+C2{\displaystyle {T_{s,2}=C_{1}\ln r_{2}+C_{2}}}

Решение для и и подставляя в общее решение, получим
C1{\ displaystyle {C_ {1}}}C2{\ displaystyle {C_ {2}}}

T(r)=Ts,1−Ts,2ln⁡(r1r2)ln⁡(rr2)+Ts,2{\displaystyle {T(r)={T_{s,1}-T_{s,2} \over {\ln(r_{1}/r_{2})}}\ln \left({r \over r_{2}}\right)+T_{s,2}}}          (7)

Логарифмическое распределение температуры схематично показано на вставке эскиза рисунка. Предполагая, что распределение температуры, уравнение 7, используется с законом Фурье в уравнении 5, скорость теплопередачи может быть выражена в следующей форме

Q˙r=2πLk(Ts,1−Ts,2)ln⁡(r2r1){\displaystyle {{\dot {Q}}_{r}={2\pi Lk(T_{s,1}-T_{s,2}) \over \ln(r_{2}/r_{1})}}}

Наконец, для радиальной проводимости в цилиндрической стенке тепловое сопротивление имеет вид

Rt,cond=ln⁡(r2r1)2πLk{\displaystyle {R_{t,\mathrm {cond} }={\ln(r_{2}/r_{1}) \over 2\pi Lk}}} such that r2>r1{\displaystyle {r_{2}>r_{1}}}

Испытания по определению коэффициента сопротивления теплопередаче

Тест был разработан с целью получить величину, которая – как ожидалось – будет иметь важное значение и станет показательной. К сожалению, разработанная методика давала систематическую погрешностью. Метод испытаний, используемый для определения коэффициента сопротивления теплопередаче – это тест ASTM (Американского Сообщества Материалов и Испытаний; American Society for Testing and Materials)

Тест был разработан с целью получить величину, которая – как ожидалось – будет иметь важное значение и станет показательной. К сожалению, разработанная методика давала систематическую погрешностью. Из-за способа испытаний тест оказывает предпочтение волокнистым теплоизоляционным материалам: стекловолокну, каменной вате и целлюлозному волокну. Очень коротко в методике упоминаются сплошные теплоизоляционные материалы, такие, как пеностекло, пробковый материал, монтажный полистирол или пенополиуретан

Метод испытаний, используемый для определения коэффициента сопротивления теплопередаче – это тест ASTM (Американского Сообщества Материалов и Испытаний; American Society for Testing and Materials)

Тест был разработан с целью получить величину, которая – как ожидалось – будет иметь важное значение и станет показательной. К сожалению, разработанная методика давала систематическую погрешностью

Из-за способа испытаний тест оказывает предпочтение волокнистым теплоизоляционным материалам: стекловолокну, каменной вате и целлюлозному волокну. Очень коротко в методике упоминаются сплошные теплоизоляционные материалы, такие, как пеностекло, пробковый материал, монтажный полистирол или пенополиуретан.

В тесте никак не учитывается движение воздуха (ветер) или количество влаги (водяного пара). Другими словами, тест, проводимый для определения коэффициента сопротивления теплопередаче – это исследования в нереальных условиях. Например, коэффициент сопротивления теплопередаче стекловолокна составляет R-3,5. Такое значение имеет место при абсолютном отсутствии ветра и нулевой влажности. А отсутствие ветра и нулевую влажность трудно назвать реальными условиями. Во всех домах есть протечки воздуха, и они зачастую водопроницаемы. Водяной пар из атмосферы, из душа, при приготовлении пищи, из выдыхаемого воздуха, т.д. постоянно циркулируют в помещениях. Если помещения не вентилируются должным образом, водяной пар изнутри дома будет очень быстро вбираться изоляцией над потолком. Даже малое количество влаги вызовет значительное падение коэффициента сопротивления теплопередаче волокнистого изоляционного материала: не меньше, чем на 50%, а то и больше.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector