Меднение в домашних условиях особенности процесса в быту
Содержание:
- Методы нанесения (гальваническое, вакуумное, диффузионное, холодное и термическое напыление)
- Меднение без ванночки
- Особенности процесса в быту
- Где используется?
- Использование меднения
- Расчет концентрации реактивов сернокислого электролита меднения
- Различные типы меднения
- Состав растворов для химического меднения.
- Виды меднения металлической поверхности
- Видео: Меднение в домашних условиях
- Характеристики омедненных металлов
- Меднение стальных изделий
- Раствор меднения для химической металлизации
- Выводы по литературному обзору
Методы нанесения (гальваническое, вакуумное, диффузионное, холодное и термическое напыление)
Существует несколько основных способов нанести хром на изделие:
Гальваническое хромирование. Заключается в осаждении металла на поверхность изделия под действием электрического тока. Если объяснять просто, изделие погружается в раствор с частичками хрома. На изделие подается электрический ток и частички начинают осаждаться на поверхности, тем самым образуя покрытие. На самом деле процесс очень сложный и дорогой. Метод актуален для металлических изделий (т.к. металл хорошо проводит ток).
Подробнее с гальваническим хромированием вы можете ознакомиться здесь
НПП Электрохимия выполняет полный цикл работ по нанесению гальванических хромовых покрытий. После нанесения покрытия и его проверки мы выдаем паспорт (сертификат) качества
Это особенно важно в рамках выполнения ГОЗ. Цена на хромирование оговаривается индивидуально с менеджером в зависимости от ТЗ
Вакуумное хромирование. Изделие погружается в вакуумную камеру с порошком. Порошок нагревается до температуры испарения и образует взвесь ионов в камере. Далее эта взвесь осаждается (бомбардировка ионами) на поверхности в виде конденсата, а затем кристаллизируется, образовывая покрытие.
Покрытие применятся в декоративных целях, особенно популярно для сувенирной и рекламной продукции (вывески, подарочная упаковка и т.д.). Отлично покрывается стекло и пластик. Идеально блестящей поверхности не всегда получается добиться, изредка покрытие осаждается неравномерно, видна шагрень (шишки). Не рекомендуется для изделий с требованиями по износостойкости.
Диффузионное хромирование. Процесс «насыщения»(заполнения) поверхности изделия хромом. Изделия погружают в порошок хрома и так же нагревают. Отличие от вакуумного метода состоит в том, что порошок не испаряется, а сразу «въедается» (диффундирует) в поверхность изделия. Примерно 50% покрытия находится внутри поверхности изделия, а 50% снаружи. Благодаря этому покрытие имеет превосходное сцепление с деталью.
Стандартный состав порошка: хром и каолин в соотношении 50 на 50. Плюс добавка (хлористый амоний/соляная кислота). Температура процесса — 1000° С, выдержка 6-15 часов.
Метод не из дешевых, но позволяет получить покрытие толщиной 100-300 мкм с хорошей адгезией и солидными защитными характеристиками.
Холодное распыление (мета-хромирование). Об этом методе мы поговорили в п.4. Просто распыление из баллончика или шланга. Красивая краска. Ни о каких защитных характеристиках и износостойкости речи быть не может. В интернете продается много готовых растворов для «хромирования» в различные цвета.
Термическое напыление. Методов достаточно много, но их объединяет одно – частицы металла нагревают до определенной температуры и с помощью направленного потока отправляют на изделие. Поток может быть газовый, пламенный, детонационный, электродуговой. Дешевый метод, применяется для изделий без высоких требований к защитным характеристикам покрытия. Подробнее можете прочесть здесь
Меднение без ванночки
Данным способом можно наносить металлическое покрытие на любые материалы. Суть заключается в «обмазке» (без прямого контакта) заготовки электролитом специальной кисточкой, щетинки которой – медные проволочки. Недостаток этой технологии в том, что добиться качественного меднения рельефных поверхностей вряд ли удастся. По крайней мере, понадобится много времени и усилий, чтобы тщательно обработать все «щели» и «выбоины».
Особенности подготовительного этапа
Кисточка. В домашних условиях ее делают из многожильного медного проводника. Снять изоляцию и «распушить» один его конец – не проблема. Чтобы было удобнее работать, стоит подумать, из чего изготовить рукоятку кисточки. Ею придется водить по поверхности образца, а с учетом того, что провода гибкие, такое меднение станет испытанием для мастера. Как вариант – подвязать «рабочую часть» к карандашу, пластиковому корпусу шариковой ручки. Догадаться несложно.
Тара. Деталь перед меднением укладывается на любую подходящую посуду. Для удобства работы она не должна иметь высоких бортиков. Оптимальный вариант – тарелка. Плюс к этому – емкость, в которой будет электролит. В нее придется постоянно опускать кисточку, поэтому и здесь выбор не затруднен. Подойдет и стакан, если образец небольшой и раствора понадобится немного. Соответственно, вся тара предварительно обрабатывается – моется, чистится, кипятится, обезжиривается.
Сборка схемы. Аналогично предыдущему способу. Кисточка выполняет функцию анода, поэтому ее к «+» БП, а покрываемая деталь является катодом (к «–»).
Процесс меднения
Для обеспечения неразрывности электрической цепи в посуду наливается электролит, так, чтобы его уровень превышал высоту детали. Кисточкой, которая периодически также обмакивается в растворе (для этого он и заливается в отдельную тару), необходимо водить по-над образцом. В результате его поверхность покрывается слоем меди. По сути, производится ее напыление.
В каких случаях целесообразно использовать такой способ меднения
- Если материал образца не является токопроводящим. При больших габаритах детали. Подобрать в домашних условиях ванночку соответствующих размеров, к примеру, для люстры, вряд ли получится.
Полезные советы
Как определить требуемые параметры блока питания? Для плотности тока при меднении нормой считаются 0,5 А/дм² образца, который предстоит покрыть защитным слоем.
- Превышение расчетного значения чревато тем, что медь сильно потемнеет, к тому же не будет прочно держаться на основе. При сложной конфигурации детали, наличии множества выступов, заостренных сегментов плотность тока берется меньшей, примерно в 2,5 раза.
Медь довольно быстро окисляется. Перед началом процесса обработки изделия электроды следует хорошо зачистить.
Время выдержки детали в растворе выбирается исходя из того, какой толщины слой необходимо получить при меднении. Зависимость прямая – чем дольше идет обработка, тем толще покрытие.
При необходимости восстановления внешнего вида истершихся элементов фурнитуры (мебельной или иной) их меднение – неплохой выход из положения.
Автор не единожды сталкивался с тем, что люди, озабоченные проблемами экологии, сразу же задаются вопросом – а как в домашних условиях организовать утилизацию отработки? Ведь электролит не вечен, и использовать его всю жизнь точно не получится. Кстати, вполне резонное и более чем справедливое замечание.
Есть неплохое решение – собирать оставшуюся после меднения «бурду» в отдельной стеклянной емкости. Зачем? Пригодится. Этот раствор отлично подходит для обработки древесины. Ваш покорный слуга, читатель, сам пропитывал им лаги перед настилом полов на даче. Учитывая, что зимой она не отапливается, условия эксплуатации материала понятны. Когда спустя 12 лет потребовалось переложить половицы, выяснилось, что лаги – как новенькие. Не было даже малейшего намека на какую-то плесень, следы гнили.
Так как любому из нас приходится заниматься если не строительством, то уж ремонтом обязательно, нет смысла куда-то потихонечку, подальше от сторонних глаз, сливать использованный электролит. Не по-хозяйски это.
Особенности процесса в быту
Омеднение металлических предметов носит название – гальваностегия. Принцип заключается в погружении предмета в раствор электролита с осажденным медным купоросом. Мало кто знает, что гальванизацию можно проводить и в домашних условиях, для этого не требуется наличие специального оборудование. Данная операция способствует подготовке поверхности к последующим обработкам либо служит промежуточной стадией при нанесении никеля, хрома, латуни.
Изделия, обработанные таким способом, с добавлением в медь других металлов, весьма устойчивы к агрессивным факторам. Меднение не предполагает особых навыков и профессиональных знаний, однако есть несколько нюансов, которые необходимо учитывать.
На видео: принцип меднения металлических предметов.
Где используется?
Выделяют несколько основных случаев применения меднения:
- Для декорирования. В последнее время увеличился спрос на старинные медные изделия. При помощи специальной обработки нанесенный слой меди придает поверхности «состаренный вид».
- Гальваническое меднение. Данный способ нанесения железа используется для производства копий отдельных медных деталей различных форм и размеров. Сначала создается основа из воска или пластика, которую в последствии покрывают электропроводящим раствором и медным слоем. Такая технология широко применяется при изготовлении сувенирной продукции, ювелирных изделий, а также барельефов и волноводов.
- В электротехнике. Низкая стоимость меднения выгодно выделяет этот метод – по сравнению с покрытиями из серебра или золота, медные изделия могут применяться в электротехнических отраслях (для производства электродов, контактов под напряжением и в качестве основы под пайку).
Статья по теме: Особенности холодного цинкования и его достоинства
Технологию меднения также совмещают с различными типами гальванизации:
- Для создания многослойного декоративного покрытия со слабыми защитными характеристиками. В таком случае используется медь, хром и никель – трехслойный защитно-декоративный слой, который повышает степень сцепления с основным материалом поверхности.
- Для защиты определённого участка детали при цементации. При гальванизации свинцовых изделий медью необходимо предохранение покрытий стальных элементов от науглероживания. Меднению поддаются только те участки, которые в дальнейшем будут подвергаться механической обработке.
- При реставрационных работах. В процессе омеднения на восстанавливаемой детали образуется промежуточный слой, который в дальнейшем послужит основой для более прочного покрытия (хромирования, никелирования). Для гальванического способа характерно нанесение толстого слоя меди, до двухсот пятидесяти микрометров. Это связано с необходимостью ликвидации всех повреждений и дефектов поверхности.
На видео: гальваническое меднение в декоративных целях.
Использование меднения
Покрытие медью различных заготовок в последнее время часто проводится в домашних условиях. В большинстве случаев технология применяется для достижения следующих целей:
- Декорирование металла или пластика. Меднение металла в домашних условиях часто проводится для того, чтобы получить старинные на вид изделия, которые пользуются большой популярностью. Специальная процедура состаривания позволяет создать эффект длительного использования изделия. Кроме этого, медь после нанесения напоминает золото. Именно поэтому небольшой слой можно нанести для получения статуэтки или сувенира.
- Гальванопластика. Меднение стали подобным образом также может проводиться в домашних условиях. Суть технологии заключается в создании восковой или пластиковой основы, которая покрывается слоем рассматриваемого сплава. Гальванопластика часто применяется для получения ювелирных изделий или сувениров, матриц и волноводов. Применение специальных материалов позволяет существенно повысить качество покрытия.
- Получение деталей, используемых при создании различных механизмов. Меднение чугуна или другого металла проводят на производственных площадках при различных технологий. Покрытие заготовки медью позволяет существенно повысить электротехнические качества. Подобным образом можно получить клеммы или прочие подобные элементы, которые будут эксплуатироваться под напряжением. Изделия из чистой меди обходятся очень дорого. Именно поэтому часто применяется рассматриваемая технология.
Меднение стали
Меднение пластика в домашних условиях проводится крайне редко, так как подобный материал не выдерживает воздействие высокой температуры. Кроме этого, пластичность основания приводит к появлению структурных трещин.
Расчет концентрации реактивов сернокислого электролита меднения
Определение концентрации серной кислоты
Для определения концентрации серной кислоты используется метод титрования. Для анализа потребуются следующие приборы: бюретка на 200 мл, пипетка на 1-2 мл., стеклянная палочка и два стеклянных стаканчика. Потребуются следующие реактивы: раствор 0,2н (нормальный раствор) гидроксида натрия NaOH или гидроксида калия KOH и 0,1%-ный раствор индикатора — метилового оранжевого. Нормальный раствор готовится по плотности гидроксида, например, при плотности гидроксида натрия равной 1,01 н. раствор будет равен 0,238.
Анализ начинают с отбора проб из разных мест гальванической ванны. Из колбы берут 20 мл электролита и разбавляют водой в два-три раза. В разбавленный электролит с помощью стеклянной палочки вносят 1 каплю индикатора и приступают к титрованию щелочью. Цвет раствора меняется с розового до желто-лимонного. Затем производится расчет содержания серной кислоты по формуле:
- где x — количество свободной серной кислоты;
- А — количество гидроксида, затраченного на титрование пробы, мл.
- В — количество электролита, взятое для анализа, мл.
- н. — нормальность раствора гидроксида.
- 0,049 — коэффициент перерасчета на содержание серной кислоты.
- 1000 — коэффициент перерасчета на 1 л.
Проведите титрование и внесите количество гидроксида (А) в форму расчета.
Определение содержания меди
Самый простой способ определения содержания меди в растворе сернокислого электролита основан на том, что плотность раствора сульфата меди и серной кислоты при одинаковой концентрации равны, а при их смешении плотность раствора не меняется. Таким образом, измерив плотность электролита при определенной температуре и зная содержание в растворе серной кислоты, можно определить количество сульфата меди. Потребуются следующие приборы: ареометр, термометр, цилиндр. Определите плотность раствора электролита при температуре 25С. и внесите данные в форму расчета.
Влияние концентрации исходных компонентов на качество гальванического покрытия
При недостаточной концентрации серной кислоты и (или) сульфата меди слой меди на поверхности основного металла имеет низкую прочность. Поверхность сыпучая, недостаточно гладкая и имеет ярко выраженную кристаллическую структуру. Добавление серной кислоты и сульфата меди по результатам анализа позволяет решить эту проблему. Если осадок меди имеет темный равномерный цвет, то скорее всего, помимо повышенной плотности тока причина заключается в недостаточной концентрации серной кислоты, т. к. серная кислота предупреждает образование на катоде окиси меди, которая имеет темный цвет и, внедряясь в отложение делает его шершавым.
|
Различные типы меднения
Меднение в домашних условиях могут выполнять даже новички в этом направлении. Чтобы получить качественное покрытие необходимо изучить все нюансы процедуры. Она может проводиться по одной из 2 технологий:
- Погружение в электролит. Заготовка погружается в жидкость и подается электроток. Обычно, используется в тех ситуациях, когда ее габариты не значительны.
- Без погружения в раствор. Более сложный процесс, но позволяющий достигать лучшего качества обмедненных поверхностей.
Во всех случаях необходимо подведение электричества, которое активизирует вещество.
Оптимальный метод выбирается в соответствии с поставленной целью:
- Формирование защитных и декоративных покрытий. Зачастую происходит смешение с никелем, хромом и медью. Получаются прочные и надежные поверхности.
- Защита при цементировании.
- Реставрация изделий.
Рассмотрим подробнее каждый из вариантов.
Омеднение с помещением в электролит
Наиболее доступный способ обмеднения в быту. Необходимы:
- Небольшого размера пластинки из меди.
- Проволока для проведения тока.
- Источник тока.
- Устройство для регулирования и измерения тока.
Последовательность действий:
- Чтобы растворить медь используется обыкновенный электролит, свободно продающийся или легко готовящийся своими руками. Для приготовления следует делать смесь серной кислоты с дистиллированной водой в пропорциях 3 к 100 миллилитрам. Нужная смесь получается после добавления в него 20 г медного купороса.
- Деталь следует очистить щеткой и наждачкой, чтобы удалить оксидную пленку.
- Провести обезжиривание раствором соды и промыть.
- Подготовленная емкость заполняется электролитическим раствором.
- В емкости размещаются 2 пластинки, подключенные к токопроводящей проволоке. Меж ними помещается деталь, которой предполагается омеднение. Нужно проверить полное закрытие смесью и пластинок, и заготовки.
- Затем пластины подключаются к плюсовому полюсу источника, а заготовка садится на минус. Предварительно желательно подключать амперметр и реостат. Выставить диапазон тока до 15 мА на 1см2 площади поверхности изделия.
- Выдержать в течение 20 минут.
- Выключается питание, заготовка извлекается из раствора. В итоге получается тонкое покрытие из меди. Продолжительность процесса оказывает влияние на толщину напыления. Благодаря технологии можно добиваться слоя до 300 мкм и более.
Метод возможно применять для обновления алюминиевых вещей, используемых в быту. Например, столовая утварь из алюминия после омеднения обретет вторую молодость.
Омеднение без помещения в раствор
Метод не предполагает залитие детали жидкостью. Он прекрасно подходит обработки цинковых или алюминиевых изделий.
Последовательность действий:
- Необходим провод – многожильный, медный. Снять изоляцию. Одна сторона распушается, делая подобие кисточки. Можно сделать что-то вроде рукояти для большего комфорта в работе. Другой край провода подключается к положительному полюсу источника тока. Напряжение – не больше 6 Вольт.
- Вышеописанным методом подготавливается электролит с медным купоросом. Посуда может использоваться любого типа, но лучше подобрать ту, которая позволит беспроблемно погружать кисточку из провода. Обрабатываемая деталь очищается от загрязнений. После этого проводами садится на отрицательный полюс источника тока.
- Процедура проводится следующим образом. Распушенный край-кисточка время от времени помещается в раствор. Ей следует проводить вдоль заготовки, не прикасаясь к ней. Поверхность нужно смочить электролитическим раствором. Во время обработки за счет отрицательного заряда деталь будет подтягивать ионы меди, покрываясь ими.
Это меднение металла подойдет для габаритных вещей, которые затруднительно поместить в емкость.
Состав растворов для химического меднения.
Для осуществления процесса химического меднения рекомендуется много разнообразных растворов. В целом состав раствора химического меднения обычно включает в себя:
- соль двухвалентной меди (сульфат меди);
- комплексообразователь;
- восстановитель;
- ускоряющие и стабилизирующие добавки;
- гидроксид натрия для регулирования рН.
Виды растворов меднения различают по тому, какой используется комплексообразователь: виннокислый (тартратный), трилонатный (этилендиаминтетрауксусный), лимоннокислый, глицериновый и т.д.
Наибольшее распространение получил виннокислый раствор химического меднения. Он содержит тартрат калия-натрия, который образует с ионами меди прочный комплексный анион [CuC4H4O6(OH)2]2-. Значительное распространение получили также трилонатные растворы, содержащие комплексообразователь трилон Б (ЭДТА). Остальные растворы применяются ограниченно.
Кроме формалина в качестве восстановителей в процессе химического меднения могут использоваться гипофосфит, гидразин, боргидрид, однако растворы меднения на их основе уступают растворам с формалином по выраженности автокаталитических свойств у осаждаемой меди, а также по стабильности, и, поэтому, не нашли практического применения.
Стабилизаторами в растворе могут выступать различные тиосоединения: тиосульфат натрия, тиомочевина, сульфид свинца, цистин, роданин, 2-меркаптобензотриазол, диэтилдитиокарбамат, а также цианистые соединения, роданиды, фенантролины и их производные, полисульфиды, соединения селена, ртути, некоторые окислители (в т.ч. кислород), высокомолекулярные вещества. На виннокислые растворы химического меднения стабилизирующее действие оказывают аммиак и углекислый натрий.
Виды меднения металлической поверхности
Процедуру меднения алюминия в домашних условиях не сложно выполнить самостоятельно. При этом не обязательно использовать специальное оборудование и активные химические реактивы. Качественное покрытие обеспечивается благодаря строгому соблюдению технологии меднения алюминия и знанию протекающих процессов.
Существует два основных вида меднения металлических поверхностей:
- С погружением заготовки в электролит, при котором изделие частично или полностью погружается в ванну с химическим реагентом. Применение такого метода обоснованно в случае, когда требуется нанести слой меди равномерно на все изделие.
- Меднение без погружения детали в химический раствор. Этот способ более сложен в исполнении. Использование его очень эффективно, если требуется произвести меднение определенного участка изделия.
В обоих этих случаях активация вещества для химического меднения алюминия осуществляется электрическим способом, что требует использования источника постоянного напряжения.
Видео: Меднение в домашних условиях
В этой инструкции я расскажу, как за несколько простых шагов покрыть медью металлическую шайбу. У вас будет обширное поле для экспериментов: вы можете поменять время, напряжение и состав кислот. Я пройдусь лишь по базовым шагам омеднения электролитическим способом, объясняя «как это сделать», но не вдаваясь в подробности «почему так происходит».
Кратко об эксперименте в домашних условиях: его цена варьируется в пределах 50-150 рублей, эксперимент займёт у вас 1 — 3 часа, а его сложность, в зависимости от ваших навыков гальванического меднения варьируется от лёгкой до средней.
Осторожно! Проводите эксперимент по меднению металла в хорошо вентилируемом помещении, а если вы молоды, то попросите взрослого помочь вам. Что вам понадобится:
Что вам понадобится:
- Медь — 2 небольших кусочка (в видео я использую медную проволоку, но в принципе подойдёт любой медный объект)
- Металлический объект, который мы будем покрывать медью (я взял шайбу)
- Стеклянный контейнер с крышкой
- Провода с зажимами-крокодилами x2
- Источник питания (предпочтительно с регулируемым напряжением)
- Уксус (который будет выступать в качестве кислоты)
- Инструмент для полировки (если хотите отполировать объект после омеднения)
Для этой инструкции я записал видео. В нём я прошелся по всем шагам омеднения, которые описаны ниже.
Характеристики омедненных металлов
Медь имеет хорошее сцепление практически со всеми металлами и сплавами, но защитные свойства медного гальванического покрытия без дополнительных слоев невысоки. Под воздействием атмосферных факторов оно достаточно быстро разрушается, и даже в домашних условиях его обычно покрывают лаком. В то же время подслой из меди значительно улучшает характеристики многослойных покрытий в части механической прочности и коррозионной стойкости. Нержавеющие стали обычно защищают от коррозии трехслойным покрытием из хрома, никеля и меди. При этом меднение проводится первым, чтобы при использовании изделия в условиях переменных нагрузок обеспечить пластичность всего составного слоя. Точно такую же роль меднение играет в покрытиях металлопроката и листового железа, из которых изготавливают профильные изделия, эксплуатируемые в условиях морского климата и агрессивных сред. Омедненные провода и контакты из алюминия легко паяются и имеют более низкое сопротивление, особенно на высоких частотах. Технические условия электролиза позволяют при меднении металлов в декоративных целях окрашивать поверхностные слои меди в различные цвета и придавать им дополнительный блеск (на фото ниже – меднение по нержавейке).
Меднение стальных изделий
Меднение стали медным купоросом является одним из основных процессов в области гальваники потому, что оно используется для предварительного покрытия медью. Она отличается высокой адгезией к стальной поверхности, в отличие от других металлов, которые не обладают хорошим сцеплением со сталью. Медный слой при соблюдении технологии держится на стальных изделиях прекрасно.
Есть две технологии нанесения покрытия: с погружением изделия в электролитный раствор и способ неконтактного покрытия поверхности медью без помещения в жидкий электролитный раствор.
Меднение путем погружения в раствор
Процесс выполняется с соблюдением следующих этапов:
- С поверхности стальной детали удаляется окисная пленка с помощью наждачной бумаги и щетки, а затем деталь промывается и обезжиривается содой с финишной промывкой водой.
- В стеклянную банку помещаются две медные пластины, подсоединенные к медным проводникам, которые служат анодом. Для этого их соединяют вместе и подводят к положительной клемме прибора, используемого в качестве источника тока.
- Между пластинами свободно подвешивается обрабатываемая деталь. К ней подводится отрицательный полюс клеммы.
- В цепь встраивается тестер с реостатом, чтобы регулировать силу тока.
- Готовится электролитный раствор, в состав которого обычно входит медный купорос – 20 грамм, кислота (соляная или серная) – от 2 до 3 мл, растворенная в 100 мл (лучше дистиллированной) воды.
- Готовый раствор заливается в подготовленную стеклянную банку. Он должен покрыть помещенные в банку электроды полностью.
- Электроды подключаются к источнику тока. С помощью реостата устанавливается ток (10-15 мА должны приходиться на 1см2 площади детали).
- Через 20-30 минут ток отключается, и деталь, покрытая медью, достается из емкости.
Покрытие медью без помещения в электролитный раствор
Такой способ используется не только для стальных изделий, но и алюминиевых предметов и изделий из цинка. Процесс осуществляется так:
- Берется многожильный медный провод, с одного конца которого снимается изоляционное покрытие, а проводкам из меди придается вид своеобразной кисточки. Для удобного использования «кисть» закрепляют на ручке — держателе (можно взять деревянную палку).
- Другой конец провода без кисти подсоединяется к положительной клемме используемого источника напряжения.
- Готовится электролитный раствор на основе концентрированного медного купороса с добавлением небольшого количества кислоты. Он наливается в широкую емкость, необходимую для удобного окунания кисти.
- Подготовленная металлическая деталь, очищенная от оксидной пленки и обезжиренная, помещается в пустую ванночку и подсоединяется к отрицательной клемме.
- Кисть смачивается приготовленным раствором и водится вдоль поверхности пластины, не прикасаясь к ней.
- После достижения необходимого медного слоя, процесс заканчивается, а деталь промывается и сушится.
Меднение алюминия медным купоросом
Нанесение на поверхность меди – отличный способ обновления алюминиевых столовых приборов и других изделий из алюминия, используемых дома.
Меднение алюминия медным купоросом можно провести самостоятельно. Упрощенный вариант для демонстрации процесса – это покрытие медью алюминиевой пластинки простой формы.
Раствор меднения для химической металлизации
В этой статье я расскажу вам как правильно приготовить раствор химического меднения, который является одним из этапов металлизации отверстий в печатных платах.
Приготовление раствора химической металлизации
Для приготовления раствора потребуются недорогие реактивы. Их можно купить в интернет магазинах, которых сейчас стало много и они работают с частными лицами. Трудностей с приобретением возникнуть не должно, было бы желание.
Порядок смешивания реактивов
1. Взвешиваем 30 гр. — медного купороса и 4 гр. — хлористого никеля. Наливаем в емкость 0,4 литра дистиллированной воды и растворяем эти реактивы в ней.
2. Взвешиваем 50 гр. — едкого натра, 20 гр. — кальцинированной соды и 85 гр. — трилона Б.
3. Наливаем в другую емкость 0,4 литра воды и растворяем реактивы в следующей последовательности.
Сначала едкий натр, затем кальцинированная сода и последним трилон Б.
4. Смешиваем эти растворы путем вливания раствора медного купороса с никелем, в раствор с трилоном Б, содой и едким натром. Хорошо перемешиваем и доводим объем раствора водой до 1 литра. Даем постоять 5..10 минут, если будет небольшой осадок, то фильтруем раствор.
5. Взвешиваем 1 гр. калия железосинеродистого (красная кровяная соль), растворяем его в 100 мл. дистиллированной воды. Затем берем шприцем 10 кубиков этого раствора — это будет 0,1 гр. этого реактива и добавляем его в только что приготовленный раствор раствора хим. меднения.
6. Взвешиваем 1 гр. калия роданистого и растворяем его в 100 мл. дистиллированный воды. Затем берем шприцем 0,3 кубика этого раствора — это будет 0,003 гр. и также добавляем его к основному раствору.
Калий железосинеродистый и калий раданистый являются ядовитыми веществами. При работе с ними соблюдайте элементарную технику безопасности. Не нюхайте, не пробуйте на вкус и т.п. При размешивании раствора, работайте в резиновых перчатках!!!
7. Хорошо перемешиваем раствор хим. меднения, теперь он готов к применению.
Хранение раствора и добавление формалина
В таком состоянии, то есть без формалина, раствор хранится очень долго, можно сразу размешать раствор на 5 литров, слить его в канистру и пользоваться им отливая нужное количество для меднения, добавляя в него формалин.
Для примера покажу как это делается.
Берем 20 мл. раствора химического меднения. По рецепту смотрим, что на 1 литр раствора нужно добавить 20 мл. формалина, произведем небольшой расчет.
Посчитаем сколько нужно формалина на 1 мл. раствора химического меднения.
20/1000 = 0,02 мл.
Так как мы взяли 20 мл. раствора хим. меднения, то..
20*0,02 = 0,4 мл. (0,4 кубика в шприце) формалина нужно добавить.
После добавления формалина, накрываем емкость крышкой. Накрываем что бы не нюхать запах формалина, берегите свое здоровье (формалин является канцерогеном!)
Данная статья опубликована на сайте . Постоянная ссылка на эту статью находится по этому адресу
Читайте статьи на сайте первоисточнике, не поддерживайте воров.
Тестирование раствора химического меднения
Чтобы протестировать как работает раствор химического меднения, берем активированный активатором диэлектрик (как активировать отверстия в печатных платах, читайте в этой статье) и опускаем в емкость. Буквально на глазах текстолит начинает темнеть и покрываться химической медью.
Процесс химического меднения должен длиться от 15 до 30 минут, и это время зависит от результата и качества покрытия, за которым вы должны следить. В процессе меднения идет газовыделение, плату нужно постоянно покачивать и переворачивать для равномерного распределения раствора по поверхности.
Прошло 20 минут, результат работы раствора на лицо, весь диэлектрик, включая отверстия, покрылся тонким 1 мкм. слоем меди и он готов к дальнейшему этапу — гальванике, этот этап подробно описан в этой статье.
Не фольгированный текстолит был взят для примера, некоторые подумают, таким образом можно не покупать фольгированный текстолит, а наращивать медь на голый диэлектрик и делать таким образом платы. Сразу хочу «обломать» вас, что бы наращивать медь на диэлектрик, нужно хорошо подготавливать поверхность, что в домашних условиях реализовать очень трудно. Так что не мучайтесь и делайте платы обычным способом, то есть, активируйте фольгированный текстолит.
Емкость раствора по меди
В заключении еще хотел добавить, расход этого раствора химического меднения берем из расчета 50 мл. раствора на 1 дм.кв. печатной платы. То есть 50 мл. раствора хватит омеднить двухстороннюю плату размером 10*10 см.
Раствор после добавления формалина будет еще жить дней 5, затем испортится.
Советую, если делаете ответственные платы, то лучше размешать с формалином свежую порцию раствора химического меднения.
Выводы по литературному обзору
В производстве ПП создание проводников электрического тока на поверхности и в отверстиях диэлектрического материала осуществляется путем нанесения меди гальваническим способом.
Нанесение медного покрытия возможно в кислых и щелочных электролитах. К кислым электролитам относятся сульфатные и фторборатные электролиты. Их основные достоинства — простота состава и устойчивость в эксплуатации, но они обладают низкой рассеивающей способностью.
К щелочным электролитам относятся цианидные, пирофосфатные и этилендиаминовые электролиты. Основные достоинства: высокая рассеивающая способность, получение мелкокристаллических осадков, возможность непосредственно меднить стальные детали
Для практических целей в гальванике в основном используют сернокислые и пирофосфатные электролиты меднения.
Подготовка поверхности является неотъемлемой и весьма существенной операцией всего технологического процесса нанесения металлических покрытий. Основное требование ‒ прочность сцепления между основой и металлическим покрытием. Подготовка поверхности включает в себя механическую обработку, обезжиривание и травление. Критерием оценки качественной подготовки служит полная смачиваемость металлизируемой поверхности.
Качество и свойства электрохимических покрытий определяется структурой и равномерностью распределения металла по толщине слоя на поверхности покрываемых изделий. Способность электролита изменять первичное распределение тока называют рассеивающей способностью электролита.
Рассеивающая способность электролита (РС) — это способность электролита давать равномерные по толщине покрытия на деталях сложного профиля или способность электролита изменять первичное распределение тока.
Распределение тока и металла по поверхности катода зависит: от размера и формы электродов и ванны, расположения электродов относительно друг друга и стенок ванны; от электрохимических факторов электропроводимости электролита, характера изменения катодной поляризации и выхода по току металла с изменением плотности тока.
Для осуществления быстрого исследования и тестирования работоспособности различных электролитов, применяемых в гальваническом производстве, используется электрохимическая ячейка с угловым катодом — ячейка Хулла.